利用拉格朗日中定值求极限具体如下:
拉格朗日中值定理求极限的公式为:lim[ln(1+tanx)-ln(1+sinx)]/x³ (x→0)。
根据拉格朗日中值定理,每一个在0附近邻域的x,tanx~sinx是一个考虑的区间,设f(x)=ln(1+x),那么有:ln(1+tanx)-ln(1+sinx)。
=f'(ξ)·(tanx-sinx),f'(ξ)=1/(1+ξ),且ξ在tanx与sinx之间。
可以把ξ看成是x的一个函数即ξ(x),那有极限=lim[(tanx-sinx)/(1+ξ(x))]/x³。
x→0时,sinx和tanx都→0,所以ξ(x)→0。故=lim(tanx-sinx)/x³,根据洛必达法则就可得出极限为1/2。
拉格朗日中值定理的运动学意义以及案例:
一、拉格朗日中值定理的运动学意义:
拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。
二、求解案例:
对于无约束条件的函数求极值,主要利用导数求解法。
比如求解函数f(x,y)=x3-4×2+2xy-y2+1的极值。步骤如下:
(1)求出f(x,y)的一阶偏导函数f’x(x,y),f’y(x,y)。
f’x(x,y) = 3×2-8x+2y
f’y(x,y) = 2x-2y
(2)令f’x(x,y)=0,f’y(x,y)=0,解方程组。
3×2-8x+2y = 0
2x-2y = 0
得到解为(0,0),(2,2)。这两个解是f(x,y)的极值点。
拉格朗日中值定理如何证明?
证:令f(x)=e^x-ex 对f(x)求导得 f '(x)=e^x-e 因为x>1 所以f '(x)=e^x-e>e¹-e=0 故f(x)在x>1上是增函数 故f(x)>f(1)=e¹-e×1=0 即e^x-ex>0 e^x>ex 证毕。
拉格朗日中值定理
定理内容:若函数f(x)在区间[a,b]满足以下条件:(1)在[a,b]连续 (2)在(a,b)可导 则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]\/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c
拉格朗日中值定理证明是什么?
拉格朗日中值定理证明如下:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0<θ<1) 上式给出了自变量取得的有限增量△x时,函数增量△y的准确表达式,因此本定理也...
如何证明拉格朗日中值定理
辅助函数法证明:已知f(x) 在[a,b]上连续,在开区间,(a,b)内可导,构造辅助函数。可得g(a)=g(b)又因为g(x)在[a,b]上连续,在开区间(a,b) 内可导,所以根据罗尔定理可得必有一点 使得 由此可得 变形得 定理证毕。
拉格朗日中值定理证明过程
拉格朗日中值定理证明过程如下:设f(x)在[a,b]连续,(a,b)可导,求证:存在ξ∈(a,b),使f(b)-f(a)=f'(ξ)(b-a)。证:构造F(x)=[f(b)-f(a)]x-f(x)(b-a)显然F(x)在[a,b]连续,(a,b)可导F(a)=[f(b)-f(a)]a-f(a)(b-a)=af(b)-bf(a)F(b)=[f(b)-f...
拉格朗日中值定理是什么条件的什么定理?
总的来说,在研究函数的单调性、凹凸性以及求极限、恒等式、不等式的证明、判别函数方程根的存在性、判断级数的敛散性以及证明与函数差值有关的命题,以及计算未定式极限等方面,都可能会用到拉格朗日中值定理。拉格朗日中值定理的几何意义也有较为广泛的应用。此外,拉格朗日中值定理的变形公式指出了函数...
拉格朗日中值定理怎样证明?
罗尔定理可知。fa=fb时,存在某点e,使f′e=0。开始证明拉格朗日。我们假设一函数fx。目标:证明fb-fa=f′e(b-a),即拉格朗日。我们假设fx来做成一个毫无意义的函数,fx-(fb-fa)\/(b-a)*x,我们也不知道他能干啥,是我们随便写的一个特殊函数,我们令它等于Fx。这个特殊函数在于,这个a和b...
拉格朗日中值定理怎么证明
拉格朗日中值定理证明方法,详细介绍如下:一、简介:拉格朗日中值定理是微积分中的一条重要定理,它指出如果一个函数在闭区间上连续,在开区间上可导,那么在这个区间内存在至少一点,使得函数的导数在该点上的值等于函数在闭区间上的平均变化率。二、证明方法:1、等差数列的平均值 首先考虑等差数列的...
拉格朗日中值定理的推论是什么?
拉格朗日定理的推论是如果函数f(x)在区间I上的导数恒为零,则f(x)在区间I上是一个常数。辅助函数法证明:已知f(x) 在[a,b]上连续,在开区间,(a,b)内可导,构造辅助函数。可得g(a)=g(b)又因为g(x)。在[a,b]上连续,在开区间(a,b) 内可导。所以根据罗尔定理可得必有一点。夹逼定理...
拉格朗日中值定理的证明方法是什么?
主要就是拉格朗日微分中值定理:(1)存在一个闭区间[a,b],内f(x) = y有意义。(2)f(x)在[a,b]连续。(3)f(x)在(a,b)内可导;那么,在(a,b)内至少有一点ξ(a<ξ<b),使得下式成立:f(b)-f(a)=f′(ξ)(b-a)初等函数(比如二元函数)一般都可导,主要是连续...