第1个回答 2005-11-03
人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门综合了 计算机科学、生理学、哲学的交叉学科。 人工智能的研究课题涵盖面很广,从机器视觉到专家系统,包括了许多不同的领域。 这其中共同的基本特点是让机器学会“思考” 。为了区分机器是否会“思考”(thinking),有必要给出“智能”(intelligence)的定义。究竟“会思考”到什么程度才叫智能?比方说,解决复杂的问题,还是能够进行概括和发现关联? 还有什么是“知觉”(perception),什么是“理解”(comprehension)等等? 对学习过程、语言和感官知觉的研究为科学家构建智能机器提供了帮助。 现在,人工智能专家们面临的最大挑战之一是如何构造一个系统,可以模仿由上百亿个神经元组成的人脑的行为, 去思考宇宙中最复杂的问题。或许衡量机器智能程度的最好的标准是英国计算机科学家阿伦·图灵的试验。 他认为,如果一台计算机能骗过人,使人相信它是人而不是机器,那么它就应当被称作有智能。
人工智能从诞生发展到今天经历了一条漫长的路,许多科研人员为此而不懈努力。 人工智能的开始可以追溯到电子学出现以前。象布尔和其他一些哲学家和数学家 建立的理论原则后来成为人工智能逻辑学的基础。而人工智能真正引起 研究者的兴趣则是1943年计算机发明以后的事。技术的发展最终使得人们可以仿真 人类的智能行为,至少看起来不太遥远。接下来的四十年里,尽管碰到许多阻碍,
人工智能仍然从最初只有十几个研究者成长到现在数以千计的工程师和专家在研究; 从一开始只有一些下棋的小程序到现在的用于疾病诊断的专家系统,人工智能的发展有目共睹。
人工智能始终处于计算机发展的最前沿。高级计算机语言、计算机界面及文字处理器的存在或多或少都得归功于人工智能的研究。人工智能研究带来的理论和洞察力指引了计算技术发展的未来方向。现有的人工智能产品相对于即将到来的人工智能应用可以说微不足道,但是它们预示着人工智能的未来。对人工智能更高层次的需求已经并会继续影响我们的工作、学习和生活。
人工智能的传说可以追溯到古埃及. 但随着1941年以来电子计算机的发展,技术已最终可以创造 出机器智能."人工智能"(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的.从那 以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展.在它还不长的历史中,人工智能的发 展比预想的要慢,但一直在前进.从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展.
计算机时代
1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介.
AI的开端
虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. Norbert Wiener是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大.
1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题."逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会".从那时起,这个领域被命名为 "人工智能".虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础.
Dartmouth会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. Carnegie Mellon大学和MIT开始组建AI研究中心.研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统.
1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试.这个程序是由制作"逻辑专家" 的同一个组开发的.GPS扩展了Wiener的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组.Herbert Gelerneter花3年时间制作了一个解几何定理的程序.
当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP语言. LISP到今天还在用."LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者采纳.
1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐.
大量的程序
以后几年出现了大量程序.其中一个著名的叫"SHRDLU"."SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助.
70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为 可能.
70年代许多新方法被用于AI开发,著名的如Minsky的构造理论.另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图象的阴影,形状,颜色,边界和纹理等基本信息辨别图象.通过分析这些信 息,可以推断出图象可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了.为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来.
从实验室到日常生活
人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员. 个人电脑和众多技术杂志使计算机技术展现在人们面前.有了象美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮.150多所象DEC(它雇了700多员工从事AI研究)这样的公 司共花了10亿美元在内部的AI开发组上.
其它一些AI领域也在80年代进入市场.其中一项就是机器视觉. Minsky和Marr的成果现在用到了生 产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不 同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.
但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一.巨大的损失迫使许多研究领 导者削减经费.另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车".这个项目目的是研制一种 能完成许多战地任务的机器人.由于项目缺陷和成功无望,Pentagon停止了项目的经费.
尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊 逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入 了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器.AI技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活.
第2个回答 2005-11-06
人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门综合了 计算机科学、生理学、哲学的交叉学科。 人工智能的研究课题涵盖面很广,从机器视觉到专家系统,包括了许多不同的领域。 这其中共同的基本特点是让机器学会“思考” 。为了区分机器是否会“思考”(thinking),有必要给出“智能”(intelligence)的定义。究竟“会思考”到什么程度才叫智能?比方说,解决复杂的问题,还是能够进行概括和发现关联? 还有什么是“知觉”(perception),什么是“理解”(comprehension)等等? 对学习过程、语言和感官知觉的研究为科学家构建智能机器提供了帮助。 现在,人工智能专家们面临的最大挑战之一是如何构造一个系统,可以模仿由上百亿个神经元组成的人脑的行为, 去思考宇宙中最复杂的问题。或许衡量机器智能程度的最好的标准是英国计算机科学家阿伦·图灵的试验。 他认为,如果一台计算机能骗过人,使人相信它是人而不是机器,那么它就应当被称作有智能。
人工智能从诞生发展到今天经历了一条漫长的路,许多科研人员为此而不懈努力。 人工智能的开始可以追溯到电子学出现以前。象布尔和其他一些哲学家和数学家 建立的理论原则后来成为人工智能逻辑学的基础。而人工智能真正引起 研究者的兴趣则是1943年计算机发明以后的事。技术的发展最终使得人们可以仿真 人类的智能行为,至少看起来不太遥远。接下来的四十年里,尽管碰到许多阻碍,
人工智能仍然从最初只有十几个研究者成长到现在数以千计的工程师和专家在研究; 从一开始只有一些下棋的小程序到现在的用于疾病诊断的专家系统,人工智能的发展有目共睹。
人工智能始终处于计算机发展的最前沿。高级计算机语言、计算机界面及文字处理器的存在或多或少都得归功于人工智能的研究。人工智能研究带来的理论和洞察力指引了计算技术发展的未来方向。现有的人工智能产品相对于即将到来的人工智能应用可以说微不足道,但是它们预示着人工智能的未来。对人工智能更高层次的需求已经并会继续影响我们的工作、学习和生活。
人工智能的传说可以追溯到古埃及. 但随着1941年以来电子计算机的发展,技术已最终可以创造 出机器智能."人工智能"(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的.从那 以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展.在它还不长的历史中,人工智能的发 展比预想的要慢,但一直在前进.从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展.
计算机时代
1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介.
AI的开端
虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. Norbert Wiener是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大.
1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题."逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会".从那时起,这个领域被命名为 "人工智能".虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础.
Dartmouth会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. Carnegie Mellon大学和MIT开始组建AI研究中心.研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统.
1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试.这个程序是由制作"逻辑专家" 的同一个组开发的.GPS扩展了Wiener的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组.Herbert Gelerneter花3年时间制作了一个解几何定理的程序.
当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP语言. LISP到今天还在用."LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者采纳.
1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐.
大量的程序
以后几年出现了大量程序.其中一个著名的叫"SHRDLU"."SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助.
70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为 可能.
70年代许多新方法被用于AI开发,著名的如Minsky的构造理论.另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图象的阴影,形状,颜色,边界和纹理等基本信息辨别图象.通过分析这些信 息,可以推断出图象可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了.为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来.
从实验室到日常生活
人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员. 个人电脑和众多技术杂志使计算机技术展现在人们面前.有了象美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮.150多所象DEC(它雇了700多员工从事AI研究)这样的公 司共花了10亿美元在内部的AI开发组上.
其它一些AI领域也在80年代进入市场.其中一项就是机器视觉. Minsky和Marr的成果现在用到了生 产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不 同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.
但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一.巨大的损失迫使许多研究领 导者削减经费.另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车".这个项目目的是研制一种 能完成许多战地任务的机器人.由于项目缺陷和成功无望,Pentagon停止了项目的经费.
尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊 逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入 了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器.AI技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活.
第3个回答 2005-11-03
什么是人工智能
“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。
人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。
人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。例如,专家系统软件,机器博弈软件等。但是,人工智能不等于软件,除了软件以外,还有硬件及其他自动化和通信设备。
人工智能虽然是计算机科学的一个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到脑科学、神经生理学、心理学、语言学、逻辑学、认知(思维)科学、行为科学和数学以及信息论、控制论和系统论等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。
人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。
传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。
人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。80年代Newell 等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本著名的书《Society of Mind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。
1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的。
http://www.chinaai.org/http://www.intsci.ac.cn/research/ai.html
第4个回答 2005-11-08
“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。
人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。
人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。例如,专家系统软件,机器博弈软件等。但是,人工智能不等于软件,除了软件以外,还有硬件及其他自动化和通信设备。
人工智能虽然是计算机科学的一个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到脑科学、神经生理学、心理学、语言学、逻辑学、认知(思维)科学、行为科学和数学以及信息论、控制论和系统论等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。
人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。
传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。
人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。80年代Newell 等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本著名的书《Society of Mind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。
1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的。