斐波那契数列的通向公式

如题

即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

【该数列有很多奇妙的属性】
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

【斐波那契数列别名】
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0123456789101112
兔子对数:1123581321345589144233
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

【斐波那挈数列通项公式的推导】

斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

【C语言程序】
main()
{
long fib[40] = {1,1};
int i;
for(i=2;i<40;i++)
{
fib[i ] = fib[i-1]+fib[i-2];
}
for(i=0;i<40;i++)
{
printf("F%d==%d\n", i, fib);
}
return 0;
}

【Pascal语言程序】
var
fib: array[0..40]of longint;
i: integer;
begin
fib[0] := 1;
fib[1] := 1;
for i:=2 to 39 do
fib[i ] := fib[i-1] + fib[i-2];
for i:=0 to 39 do
write('F', i, '=', fib[i ]);
end.
【数列与矩阵】
对于斐波那契数列1,1,2,3,5,8,13…….有如下定义
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
对于以下矩阵乘法
F(n+1) = 1 1 * F(n)
F(n) 1 0 F(n-1)
它的运算就是
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可见该矩阵的乘法完全符合斐波那契数列的定义
设1 为B,1 1为C
1 1 0
可以用迭代得到:
斐波那契数列的某一项F(n)=(BC^(n-2))1
这就是斐波那契数列的矩阵乘法定义.
另矩阵乘法的一个运算法则A¬^n(n为偶数)=A^(n/2)* A^(n/2).
因此可以用递归的方法求得答案.
时间效率:O(logn),比模拟法O(n)远远高效。
代码(PASCAL)
{变量matrix是二阶方阵, matrix是矩阵的英文}
program fibonacci;
type
matrix=array[1..2,1..2] of qword;
var
c,cc:matrix;
n:integer;
function multiply(x,y:matrix):matrix;
var
temp:matrix;
begin
temp[1,1]:=x[1,1]*y[1,1]+x[1,2]*y[2,1];
temp[1,2]:=x[1,1]*y[1,2]+x[1,2]*y[2,2];
temp[2,1]:=x[2,1]*y[1,1]+x[2,2]*y[2,1];
temp[2,2]:=x[2,1]*y[1,2]+x[2,2]*y[2,2];
exit(temp);
end;
function getcc(n:integer):matrix;
var
temp:matrix;
t:integer;
begin
if n=1 then exit(c);
t:=n div 2;
temp:=getcc(t);
temp:=multiply(temp,temp);
if odd(n) then exit(multiply(temp,c))
else exit(temp);
end;
procedure init;
begin
readln(n);
c[1,1]:=1;
c[1,2]:=1;
c[2,1]:=1;
c[2,2]:=0;
if n=1 then
begin
writeln(1);
halt;
end;
if n=2 then
begin
writeln(1);
halt;
end;
cc:=getcc(n-2);
end;
procedure work;
begin
writeln(cc[1,1]+cc[1,2]);
end;
begin
init;
work;
end.
【数列值的另一种求法】
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距离 x 最近的整数。

【数列的前若干项】
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89
11 144
12 233
13 377
14 610
15 987
16 1597
17 2584
18 4181
19 6765
20 10946
温馨提示:内容为网友见解,仅供参考
无其他回答

斐波那契Fibonacci数列的通项公式
斐波那契数列的通项公式 斐波那契数列的通项比是黄金分割比:Xn=Fn+1\/Fn=(Fn+Fn-1)\/Fn=1+ Fn-1\/Fn=1+1\/Xn-1;即有Xn=1+1\/Xn-1;求极限,x=1+1\/x;解得x=(1+sqr(5))\/2 而Fn\/Fn+1=1\/x=(sqr(5)-1)\/2 这里用了极限的方法斐波那契数列的通项公式 Fn=[(1+√5)\/2...

斐波那契数列通项公式是什么?
它的通项公式为:[(1+√5)\/2]^n \/√5 - [(1-√5)\/2]^n \/√5 【√5表示根号5】很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。该数列有很多奇妙的属性 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……还有一项性质,从...

求斐波那契数列通项公式
它的通项公式为:(1\/√5)*{[(1+√5)\/2]^n - [(1-√5)\/2]^n}【√5表示根号5】

裴波那契数列的通项公式?
递推公式:an=a(n-1)+a(n-2)通项公式及推导方法:斐波那契数列公式的推导斐波那契数列:1、1、2、3、5、8、13、21、…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递...

斐波那契数列通项公式
斐波那契数列通项公式:F[n]=F[n-1]+F[n-2](n>=2,F[0]=1,F[1]=1)。斐波那契数列介绍如下:斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称“兔子数列”。其数值为:1、1、2、3、5、8、13、21、34...

斐波那契数列通项公式
斐波那契数列通项公式:Xn=Fn+1\/Fn=(Fn+Fn-1)\/Fn=1+Fn-1\/Fn=1+1\/Xn-1,在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

斐波那契数列的通项公式是?
F(n)=(√5\/5)*{[(1+√5)\/2]^(n+1) - [(1-√5)\/2]^(n+1)}(√5表示根号5)。

如何计算斐波那契数列的通项公式?
斐波那契数列的通项公式是F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1,F(n)表示第n项。递归公式虽然直观,但在实际计算中效率并不高。如果要计算很大的项,比如F(10000),就需要进行很多次的递归计算,时间成本很高。为了解决这个问题,数学家们找到了其他的求解方法。其中最著名...

斐波那契数列通项公式是什么?
公式:数列从第三项开始,每一项都等于前两项之和,它的通项公式为:[(1+√5)\/2]^n \/√5 - [(1-√5)\/2]^n \/√5 【√5表示根号5】解得x=(1+sqr(5))\/2 而Fn\/Fn+1=1\/x=(sqr(5)-1)\/2 这里用了极限的方法斐波那契数列的通项公式 Fn=[(1+√5)\/2]^n \/√...

裴波那契数列的通项公式用字母怎样表达?
斐波那契数列的通项公式:f(n)=f(n-1)+f(n-2)比如第一项是1,第二项是1,那么:第三项是2,第四项是3,第五项是5,第六项是8

相似回答
大家正在搜