xe^arctanx\/(1+x^2)^(3\/2)
换元令arctanx=t 原式=∫tant*e^t\/(1+tant^2)^1\/2dt =∫sinte^t\/cost*sectdt =∫sinte^tdt 分部积分有 ∫sinte^tdt=-coste^t+∫coste^tdt =-coste^t+sinte^t-∫sinte^tdt 2∫sinte^tdt=sinte^t-coste^t 所以原式=(sinte^t-coste^t)\/2 代入arctanx=t (注意化简) 即可 ...
xe^arctanx\/(1+x^2)^(3\/2) 求积分
简单计算一下即可,答案如图所示
求∫[xe^(arctanx)
首先,将积分变换为关于arctanx的微分形式:∫[xe^(arctanx)\/(1+x^2)^(3\/2)]d(arctanx)。然后,利用微分替换,将原积分转换为:∫[x\/(1+x^2)^(1\/2)]d[e^(arctanx)]。进一步简化得到:[x\/(1+x^2)^(1\/2)]e^(arctanx)-∫[1\/(1+x^2)^(1\/2)]d[e^(arctanx)\/(1+...
∫xe^arctanx\/(1+x^2)^3\/2dx 次方 求解啊,知道是换元法,求详解啊_百度...
令arctanx=t,则x=tant,dx=sec²tdt ∫xe^arctanx\/(1+x^2)^3\/2dx =∫tante^t\/(1+tan^2;t)^3\/2*sec²tdt =∫tante^t\/sec ³t sec ²tdt =∫tante^t\/sectdt =∫sinte^tdt (1)=-∫e^tdcost =-coste^t+∫coste^tdt =-coste^t+sinte^t-∫sinte^...
∫(xe^arctanx)\/(1+x²)^3\/2dx等于多少
解题过程如下:设x=tant,t=arctanx,dx=(sect)^2dt cost=1\/√(1+x^2),sint=x\/√(1+x^2)原式=∫ tant*e^t*(sect)^2dt\/([1+(tant)^2]^(3\/2)=∫ tant*e^t*(sect)^2dt\/(sect)^3 =∫ sint*e^tdt =e^t(sint-cost)\/2+C =e^(arctanx)[x\/√(1+x^2)-1\/√(1+...
一道高数题求助
换元x=tant就好了
高数题(请把答案用图片的形式上传,过程要详细点,谢谢!)
∫xe^arctanxdx\/(1+x^2)^(3\/2)x=tanu dx=secu^2 cosu=1\/√1+x^2) sinu= x\/√(1+x^2)=∫e^u tanusecu^2du\/secu^3 =∫e^utanucosudu =∫e^usinudu=(1\/2)e^u(sinu-cosu)+C=(1\/2)e^arctanx *(x-1)\/√(1+x^2) +C ∫e^usinu =∫sinude^u =e^usin...
如图,求不定积分
令arctanx=t,则x=tant,dx=(sect)^2dt, ∫xe^arctanx\/(1+x^2)^3\/2 dx=∫[tant*e^t\/(sect)^3*(sect)^2]dt=∫e^t*sintdt=1\/2*e^t(sint-cost)+C=1\/2*e^arctanx*(x-1)\/√(1+x^2)+C 简单,现设x=tant,则arctanx=t. 则原式为e^t\/sect的积分.懂吧,...
xe^arctanx\/(1+x^2)求积分(注意分母没有2\/3次方)?
令x=tant,则dx=sec^2tdt 原式=∫tant*(e^t)\/sec^2t*sec^2tdt =∫tant*e^tdt 原函数无法用初等函数表出
计算不定积分∫xearctanx(1+x2)32dx
解答:解 令t=arctanx,即x=tant,则∫xearctanx(1+x2)32dx=∫tant?et(1+tan2t)3\/2?sec2tdt=∫etsintdt而∫etsintdt=∫etd(-cost)=-costet+∫etcostdt=-costet+∫etdsint=-costet+sintet-∫etsintdt∴∫etsintdt=12et(sint?cost)+C.(其中C为任意常数)∫xearctanx(1+x...