勾股定理的多种证明方法

要详解

第1个回答  推荐于2018-03-13
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们

图1 直角三角形

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

图2 勾股圆方图

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”本回答被提问者和网友采纳
第2个回答  2006-08-31
数学书也有,很详细了。
第3个回答  2006-08-31

勾股定理的证明方法
1、几何法:构造一个直角三角形,利用勾股定理求出斜边长。2、代数法:将直角三角形三边的长度带入勾股定理的公式中,证明等式成立。3、数学归纳法:证明当斜边长为n时,勾股定理成立,再证明当斜边长为n+1时,勾股定理仍然成立。4、三角函数法:利用正弦、余弦、正切等三角函数的定义,证明勾股定理。

十种方法证明勾股定理
十种方法证明勾股定理有欧拉定理证明法、代数证明法、数学归纳法证明、相似三角形证明法、向量证明法、向量证明法、割圆术证明法、平面几何证明法、解析几何证明法、解析几何证明法、三角函数证明法、古希腊证明法。1、欧拉定理证明法。构造出一个直角三角形,把它的两条直角边对应的两个正方形放在真角三...

勾股定理的证明方法最简单的6种
一、正方形面积法 这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图 赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较...

勾股定理验证方法
勾股定理验证方法如下:1、构造法:构造一个直角三角形,其中两条直角边的长度分别为a和b,斜边的长度为c。通过计算斜边的平方,并与两直角边的平方之和进行比较,如果相等,则验证了勾股定理。2、拼接法:将两个相同的直角三角形拼接成一个正方形。正方形的边长等于斜边c,因此正方形的面积等于c...

勾股定理最简单的四种几何证明办法 图文
勾股定理的证明方法一:切割定理证明 勾股定理的证明方法二:直角三角形内切圆证明 勾股定理的证明方法三:反证法证明 勾股定理的证明方法四:杨作玫证明

证明勾股定理的16种方法
证明勾股定理的16种方法如下:1、证法一(邹元治证明);2、证法二(课本的证明);3、证法三(赵爽弦图证明;4、证法四(总统证明);5、证法五(梅文鼎证明);6、证法六(项明达证明;7、证法七(欧几里得证明);8、证法八(相似三角形性质证明);9、证法九(杨作玫证明);10、证法十...

勾股定理的证明三种方法
勾股定理的证明 【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 .【证法2】(邹元治证明...

勾股定理如何证明
勾股定理的三个证明方法为面积相等法、相似三角形法和四边形法。1、面积相等法:以a、b为直角边,以c为斜边做四个全等的直角三角形。则每个直角三角形的面积等于1\/2ab。设AEa,BE=b,CE=c,作DE⊥BC于E。则△ADE和△BCE是两个相似的三角形,它们的面积之比为AE\/EC=a\/c,BC\/EB=b\/c。因此...

用多种不同的方法验证勾股定理
验证勾股定理不同的方法有赵爽弦图、托勒密定理、射影定理。1、赵爽弦图 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在...

勾股定理的多种证明方法
90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则 a^2+b^2=S+2 x 1\/2xab c^2=S+2x1\/2 x ab ∴ a^2+b^2=c^2.参考资料:百度百科-勾股定理 ...

相似回答