1、做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从下图可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。
2、以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上。
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于a+b的平方。
∴a加b的平方等于4乘二分之一ab,加上c的平方。 .
∴a的平方加b的平方等于c的平方。
3、以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这四个直角三角形拼成如图所示形状。
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于b减a的平方。
∴ 4乘二分之一ab加上,b减a的平方等于c的平方。
∴ a^2+b^2=c^2(说明a^2为a的平方)。
4、以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于二分之一c^2.
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD∥BC.
∴ ABCD是一个直角梯形,它的面积等于1/2(a+b)^2.
∴1/2(a+b)^2=2x1/2ab+1/2c^2. .
∴a^2+b^2=c^2.
5、做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则
a^2+b^2=S+2 x 1/2xab
c^2=S+2x1/2 x ab
∴ a^2+b^2=c^2.
参考资料:百度百科-勾股定理
勾股定理的10种证明方法:课本上的证明
勾股定理的10种证明方法:邹元治证明
勾股定理的10种证明方法:赵爽证明
勾股定理的10种证明方法:1876年美国总统Garfield证明
勾股定理的10种证明方法:项明达证明
勾股定理的10种证明方法:欧几里得证明
勾股定理的10种证明方法:杨作玫证明
勾股定理的10种证明方法:切割定理证明
勾股定理的10种证明方法:直角三角形内切圆证明
勾股定理的10种证明方法:反证法证明
扩展资料:
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
勾股数组是满足勾股定理 的正整数组 ,其中的 称为勾股数。例如 就是一组勾股数组。任意一组勾股数 可以表示为如下形式: , , ,其中 均为正整数,且 。
定理用途:已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
意义:
1.勾股定理的证明是论证几何的发端;
2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
本回答被网友采纳详细可见勾股定理的16种证明方法:勾股定理16种证明方法
勾股定理的10种证明方法:课本上的证明
勾股定理的10种证明方法:邹元治证明
勾股定理的10种证明方法:赵爽证明
勾股定理的10种证明方法:1876年美国总统Garfield证明
拓展资料:
毕达哥拉斯证法:
传说中毕达哥拉斯的证法(图1)
左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为a、b,斜边c为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a²+b²+4×1/2ab=c²+4×1/2ab,化简得a²+b²=c²。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。
毕达哥拉斯证法:
一、传说中毕达哥拉斯的证法(图1)
左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为a、b,斜边c为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a²+b²+4×1/2ab=c²+4×1/2ab,化简得a²+b²=c²。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。
二、赵爽弦图的证法
第一种方法:边长为的正方形可以看作是由4个直角边分别为a、b,斜边为c 的直角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式c²+4×1/2ab=(a+b)²,化简得a²+b²=c²。
第二种方法:边长为的正方形可以看作是由4个直角边分别为a、b,斜边为 c的直角三角形拼接形成的(虚线表示),不过中间缺出一个边长为(b-a)的正方形“小洞”。
因为边长为c的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式c²=(b-a)²+4×1/2ab,化简得a²+b²=c²。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法
这个直角梯形是由2个直角边分别为a、b,斜边为c 的直角三角形和1个直角边为c
的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式c²/2+2×1/2ab=(b+a)(a+b)/2,化简得a²+b²=c²。
这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
勾股定理:勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数是组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。 目前初二学生教材的证明方法采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a²+b²=c²。
勾股定理的证明方法
1、几何法:构造一个直角三角形,利用勾股定理求出斜边长。2、代数法:将直角三角形三边的长度带入勾股定理的公式中,证明等式成立。3、数学归纳法:证明当斜边长为n时,勾股定理成立,再证明当斜边长为n+1时,勾股定理仍然成立。4、三角函数法:利用正弦、余弦、正切等三角函数的定义,证明勾股定理。
十种方法证明勾股定理
十种方法证明勾股定理有欧拉定理证明法、代数证明法、数学归纳法证明、相似三角形证明法、向量证明法、向量证明法、割圆术证明法、平面几何证明法、解析几何证明法、解析几何证明法、三角函数证明法、古希腊证明法。1、欧拉定理证明法。构造出一个直角三角形,把它的两条直角边对应的两个正方形放在真角三...
勾股定理的证明方法最简单的6种
一、正方形面积法 这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图 赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较...
勾股定理验证方法
勾股定理验证方法如下:1、构造法:构造一个直角三角形,其中两条直角边的长度分别为a和b,斜边的长度为c。通过计算斜边的平方,并与两直角边的平方之和进行比较,如果相等,则验证了勾股定理。2、拼接法:将两个相同的直角三角形拼接成一个正方形。正方形的边长等于斜边c,因此正方形的面积等于c...
勾股定理最简单的四种几何证明办法 图文
勾股定理的证明方法一:切割定理证明 勾股定理的证明方法二:直角三角形内切圆证明 勾股定理的证明方法三:反证法证明 勾股定理的证明方法四:杨作玫证明
证明勾股定理的16种方法
证明勾股定理的16种方法如下:1、证法一(邹元治证明);2、证法二(课本的证明);3、证法三(赵爽弦图证明;4、证法四(总统证明);5、证法五(梅文鼎证明);6、证法六(项明达证明;7、证法七(欧几里得证明);8、证法八(相似三角形性质证明);9、证法九(杨作玫证明);10、证法十...
勾股定理的证明三种方法
勾股定理的证明 【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 .【证法2】(邹元治证明...
勾股定理如何证明
勾股定理的三个证明方法为面积相等法、相似三角形法和四边形法。1、面积相等法:以a、b为直角边,以c为斜边做四个全等的直角三角形。则每个直角三角形的面积等于1\/2ab。设AEa,BE=b,CE=c,作DE⊥BC于E。则△ADE和△BCE是两个相似的三角形,它们的面积之比为AE\/EC=a\/c,BC\/EB=b\/c。因此...
用多种不同的方法验证勾股定理
验证勾股定理不同的方法有赵爽弦图、托勒密定理、射影定理。1、赵爽弦图 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在...
勾股定理的多种证明方法
90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则 a^2+b^2=S+2 x 1\/2xab c^2=S+2x1\/2 x ab ∴ a^2+b^2=c^2.参考资料:百度百科-勾股定理 ...