不定积分f(x)= x/ x-1的原函数是什么?

如题所述

答案是π/2。

解题过程如下图:

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

扩展资料

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

温馨提示:内容为网友见解,仅供参考
无其他回答

不定积分f(x)= x\/ x-1的原函数是什么?
答案是π\/2。解题过程如下图:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

函数f(x)= x-1的原函数是什么?
具体回答如图:连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

如图,请问函数y= x\/ x-1的解析式?
解法如下图所示:

x分之负一的原函数是什么
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

不定积分x╱(x-1)½的原函数
不定积分x╱(x-1)½的原函数  我来答 1个回答 #热议# 武大靖在冬奥的表现,怎么评价最恰当?fnxnmn 2014-12-21 · TA获得超过5.8万个赞 知道大有可为答主 回答量:1.1万 采纳率:14% 帮助的人:1亿 我也去答题访问个人页 关注 展开全部 本回答由提问者推荐 已赞过 已踩过< 你对...

求函数y=1\/(x-1)的不定积分
= ∫ [1 - 1\/(1 + x)] dx = x - ln|1 + x| + C 把函数f(x)的所有原函数F(x)+C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x...

不定积分的推导过程是什么?
不定积分公式的推导过程各不相同,推导过程如下:1、∫1dx=x+C(C为常数)推导过程:设f(x)=1,根据定义,f(x)的原函数为F(x)=x+C,即∫1dx=x+C。2、∫cosxdx=sinx+C(C为常数)推导过程:设f(x)=cosx,根据定义,f(x)的原函数为F(x)=sinx+C,即∫cosxdx=sinx+C。3...

1\/ x的原函数是什么?
原函数的定义是,如果F'(x)=f(x),则称F(x)是f(x)的一个原函数!所以利用导数 (-1\/x)'=[-x^(-1)]'=x^(-2)=1\/x²可知(-1\/x)是1\/x²的一个原函数!所以1\/x²的原函数全体是(-1\/x)+C,其中C为任意常数!

求不定积分1\/x√(x^2-1)
*sect*tantdt=∫1dt=t+C 而x=sect=1\/cost,∴cost=1\/x,∴t=arccos(1\/x)∴原式=arccos(1\/x)+C 连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

请问1\/x根号下(x-1)的不定积分是什么?急求!!谢谢
具体回答如图:

相似回答
大家正在搜