求函数f(x)=cos^2(x-pai/12)+sin^2(x+pai/12)-1的周期

求函数f(x)=cos^2(x-pai/12)+sin^2(x+pai/12)-1的周期
教我一下过程,高一的基本忘了,公式最好也列出来!
谢谢了,各位大虾!

第1个回答  2010-07-07
f(x)=cos^2(x-pai/12)+sin^2(x+pai/12)-1
=[1+cos(2x-π/6)]/2+[1-cos(2x+π/6)]/2-1
=[cos(2x-π/6)-cos(2x+π/6)]/2
=(sin2x)/2
所以最小正周期为π
这里主要公式是二倍角公式和两角和差公式,都是常规公式,书上有

参考资料:团队:我最爱数学!

第2个回答  2010-07-07
The rockets to Alan didn't interest not only retired as Bryant win gambling
Beijing time on July 6, the Houston chronicle columnist Jonathan answered the blog fegan - the new questions, fans of the target is that the rockets fagan inside players, they won't go chasing ray Allen. In chasing Chris bosh, when the rockets this behavior, so that is a kind of gambling, but if not, then the gambling as Bryant won only retirement --

The rockets fans: for ray Allen interested? If Alan willing to accept his middle contract, can become the "sixth man".

Fegan: I think ray Allen will return to the celtics. The rockets won't chase him, even if they can't get bosh, they that contract to a big middle.

Fan: if the rockets got,Nba Jersey, then they can bosh beat the lakers in the western conference finals? I think the rockets still lack the player has playoff experience, they should add some kind of role players.

Rockets need not add fagan: role players, they just need another superstar, a potential partner and yao Ming, the star bosh and would be a good partner. You can see the two seasons ago: in the playoffs in the first round, the rockets beat a top team in western, and then put the lakers in round 2 youyet tiebreak. Then again they have got Kevin Martin, trevor ariza, Patrick Paterson, Jordan - hill and chase, and Aaron - bardeen Brooks has also become the fastest player, the progress of alliance and they lost only RON artest and Carl landry. If yao can stay healthy, why not become a rocket championship contenders? Don't they wait to Bryant retirement? They are good, they can play better. In order to become better,Wholesale Jerseys Factory, the rockets must bear the risk of trade, if they can undertake such transactions.

If the rockets fans in mid-season trade t-mac will, so now they will have enough space to direct salary with bosh.

But the rockets won't have fagan Kevin Martin, Jordan - hill and two draft picks in the future.

Fan: I just want to know, considering the past several days in the league players get free contract,Authentic Nba Jerseys, you think luis scola and kyle - los repower how get a contract? In addition, I very like josh Howard, you think he is suitable for the rockets?

Fegan: I don't think the way for the rockets play Howard,Sport Jerseys, although he is in good condition of certain efficiency. Scola and red is restricted free agent, I can't guess how they can get the contract. Scola seems can at least get terms, and as the middle of this red guard seems to always get that contract.
第3个回答  2010-07-07
cos²x=(1+cos2x)/2
sin²x=(1-cos2x)/2
所以f(x)=[1+cos(2x-π/6)]/2+[1-cos(2x+π/6)]/2-1
=1/2[cos(2x-π/6)-cos(2x+π/6)]
=1/2[(cos2xcosπ/6+sin2xsinπ/6)-(cos2xcosπ/6-sin2xsinπ/6)]
=sin2xsinπ/6
=(1/2)sin2x
所以T=2π/2=π本回答被提问者采纳

求函数f(x)=cos^2(x-pai\/12)+sin^2(x+pai\/12)-1的周期
f(x)=cos^2(x-pai\/12)+sin^2(x+pai\/12)-1 =[1+cos(2x-π\/6)]\/2+[1-cos(2x+π\/6)]\/2-1 =[cos(2x-π\/6)-cos(2x+π\/6)]\/2 =(sin2x)\/2 所以最小正周期为π 这里主要公式是二倍角公式和两角和差公式,都是常规公式,书上有 参考资料:团队:我最爱数学!

...\/2+pai\/12)+√3sin(x\/2+pai\/12)cos(x\/2+pai\/12)-1\/2。
首先根据倍角公式,得到 f(x)=[1-cos(x+π\/6)]\/2+根号3sin(x+π\/6)\/2 =根号3sin(x+π\/6)\/2-cos(x+π\/6)\/2+1\/2 =sin(x+π\/6)cosπ\/6-cos(x+π\/6)sinπ\/6+1\/2 =sin(x+π\/6-π\/6)+1\/2 =sinx+1\/2 所以f(x)的值域是[-1\/2, 3\/2]祝你学习愉快,生活幸福O...

已知函数f(x)=cos(2x-pai\/3)+2sin(x-pai\/4).sin(x+pai\/4)求函数在区...
f(x)=cos(2x-π\/3)+2sin(x-π\/4)cos[π\/2-(x+π\/4)]=cos(2x-π\/3)+2sin(x-π\/4)cos(π\/4-x)=cos(2x-π\/3)+2sin(x-π\/4)cos(x-π\/4)=cos(2x-π\/3)+sin(2x-π\/2)=cos(2x-π\/3)-cos2x =(1\/2)cos2x+(√3\/2)sin2x-cos2x =(√3\/2)sin2x-(1\/2)cos...

已知函数f(x)=cos^2(x+pai\/12)+1\/2sin2x化简?
f(x)=[cos(2x+pi\/6)]\/2+1\/2+1\/2sin2x =cos2xcos(pi\/6)\/2-sin(2x)sin(pi\/6)\/2+1\/2sin2x+1\/2 =根号3\/4*cos(2x) +1\/4sin(2x)+1\/2 =1\/2sin(2x+pi\/3)+1\/2

已知函数fx=cos^2(x-pai\/6)-sin^2
f(x) =[cos(x-π\/6)]^2 - (sinx)^2 = [(√3\/2)cosx + (1\/2)sinx]^2 - (sinx)^2 = (1\/4)( 3(cosx)^2 + 2√3sinxcosx -3(sinx)^2 )= (1\/4) ( 3cos2x + √3sin2x )= (√3\/2)((√3\/2)cos2x+ (1\/2)sin2x)= (√3\/2)sin(2x+π\/3)max f(x) ...

已知函数f(x)=cos(2x-派
f(x)=cos2x*1\/2+sin2x*根号3\/2-cos2x=-1\/2cos2x-根号3\/2sin2x=-cos(2x-Pai\/3)最小正周期T=2Pai\/2=Pai 对称轴方程是2x-Pai\/3=kPai 即有x=kPai\/2+Pai\/6

已知函数f(x)=cos^2x-根号3sinxcosx+1. (1)求函数f(x)的单调递增...
=-sin(2x-pai\/6)+3\/2 t=sin(2x-pai\/6)f(t)=-t+3\/2 f(t)在R上是单调递减的 f(t)的单调递增区间就是t(x)的单调递减区间 2kpai+pai\/2<=2x-pai\/6<=2kpai+3pai\/2 kpai+pai\/3<=x<=kpai+5pai\/6:k:Z [kpai+pai\/3,kpai+5pai\/6](2)f(a)=-sin(2a-pai\/6)+3\/2=...

已知f(x)=cos(2x+派\/3)
f(x)=cos2xcos2Pai\/3+sin2xsin2Pai\/3-cos2x=-1\/2cos2x+根号3\/2sin2x-cos2x=根号3*(sin2x*1\/2-根号3\/2*cos2x)=根号3sin(2x-Pai\/3)故最小正周期T=2π\/2=π 单调增区间是:2KPai-Pai\/2<=2x-Pai\/3<=2kPai+Pai\/2 即是[KPai-Pai\/12,KPai+5Pai\/12](2)f(B\/2)=根号3s...

已知函数f(x)=cos^2(x-π\/6)-sin^2x
f(x)=cos^2(x-π\/6)-sin^2x =(2cos^2(x-π\/6)-1+1)\/2+(1-2sin^2x-1)\/2 =[cos(2x-π\/3)+cos2x]\/2 =(cos2xcosπ\/3+sin2xsinπ\/3+cos2x)\/2 =根号3(2分之根号3倍的cos2x+2分之sin2x)\/2 =根号3\/2sin(2x+π\/3)0<=x<=Pai\/2,则有Pai\/3<=2x+Pai\/3<=4...

关于高中数学一道三角函数题!
得到sin(a+π\/4)=1\/2 又a属于(0,π) 所以a+π\/4属于(π\/4,5π\/4)所以a+π\/4=5π\/6 得到a=7π\/12 (2)x属于[-π\/4,π] 得到x+π\/4属于[0,5π\/4] sin(x+π\/4)属于[-√2\/2,1]得到f(x)属于[-1\/2,√2\/2]所以函数的最大值是√2\/2,最小值是-1...

相似回答
大家正在搜