高等数学中:数列收敛和数列有界 有啥区别啊

请简要说明下

收敛表示数列元素的和有界,当趋于无穷大时数列元素值趋于零。有界表示数列每个值都在某一范围内。

高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。


课程特点

通常认为,高等数学是由17世纪后微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。相对于初等数学和中等数学而言,学的数学较难,属于大学教程,因此常称“高等数学”,在课本常称“微积分”,理工科的不同专业。

文史科各类专业的学生,学的数学稍微浅一些,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。



温馨提示:内容为网友见解,仅供参考
第1个回答  2010-07-09
收敛的数列{Sn}必定有界.因为|Sn-s|<e(n-->a)--->-e<Sn-s<e--->s-e<Sn<s+e,说明{Sn}的项(除开始的几项以外)都在有限区间(s-e,s+e)内,因而有界.
有界的数列未必收敛.例如数列:1,-1,1,-1,......的所有项的值都在0与2之间,是有界的,但是却不趋向于任何实数,因而无极限就是不收敛.本回答被提问者采纳
第2个回答  2010-07-09
收敛表示数列元素的和有界,当趋于无穷大时数列元素值趋于零。有界表示数列每个值都在某一范围内。

跪求高数大神解释有界和收敛的区别,有界不一定收敛么?
一、两者的性质不同:1、有界的性质:(1)单调性:闭区间上的单调函数必有界。其逆命题不成立。(2)连续性:闭区间上的连续函数必有界。其逆命题不成立。(3)可积性:闭区间上的可积函数必有界。其逆命题不成立。2、收敛的性质:(1)全局收敛:对于任意的X0∈[a,b],由迭代式Xk+1=φ(X...

高等数学:有界不一定收敛,收敛一定有界,为什么呢
本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是一个确定的数,显然有界,当n趋于无穷时数列收敛,,说明后面的任意项都是一个有限的数。而函数收不收敛是指当x趋于x0时,函数的敛散情况,当x趋于x0收敛,函数在x0处肯定是有界的,但并不代表x趋于x1就一定收敛...

数列收敛和有界的区别
收敛表示数列元素的和有界,当趋于无穷大时数列元素值趋于零。有界表示数列每个值都在某一范围内。高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。通...

数列有界为什么不一定收敛?
数列有界指的是该数列存在一个上界和下界,即数列中的所有元素都在某个范围之内。而数列收敛则是指该数列的极限存在,并且数列中的元素逐渐趋近于该极限。虽然有界性和收敛性在某些情况下可以同时存在,但数列有界并不意味着数列一定收敛。为了理解数列有界不一定收敛的原因,我们需要先了解数列收敛的定义和...

数列有界和收敛的区别,如果有界是指在区间内有界限,那什么数列是无界的...
先讲二者的关系,数列收敛,则一定有界.但数列有界,不一定收敛.有界的概念是指,如果存在一个正数M,使得数列{an}中所有的项的绝对值|an|≤M,就称数列有界.无界就是说,对任何一个正数M,都存在某个{an}中的项a0,|a0|>M.无界的例子很多,最简单的就是an=n这个数列.因为你找不到任何一个正数M使得...

为何数列有界必然收敛,有界必然收敛?
1、数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的。2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分...

数列有界和收敛的关系是什么?
数列有界是数列收敛的条件是必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛。显然是有界的,但也是发散的。所以有界不是收敛的充分条件。有界数列是指任一项的绝对值都小于等于某一整数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界...

数列有界和数列收敛
1.数列收敛一定是有界。书上应该有证明,很简单的,由定义知对于任意的E>0,存在N>0,使得对于n>N,|An-C|<E,由E的任意性取E=1,这有|An|<C+1,这就知道数列是有界的。2.而有界不一定收敛,反例很多的。如最简单的An=(-1)^n,显然是有界的,但是不收敛。有一个很有用的定理:单调有界...

高数:收敛,有界,有极限 之间的联系与区别到底是什么?
函数收敛,但不一定有界,比如函数y=1\/n,n为自然数,y=1\/n是无界的。函数极限存在,根据单调有界准则,函数必定收敛。函数极限存在,根据极限的有界性,函数必定有界。函数有界,但不一定存在极限;根据单调有界准则,函数极限应存在上界和下界才能成立。此外函数有界有存在单侧有界的情况。

数列有界和收敛的关系是什么?
收敛的函数一定有界,但有界不一定收敛,收敛是有界的充分不必要条件。数列收敛则一定有界。 请注意这里是数列,而不是函数。例子:数列{1\/x}(x\>0),x是正整数,当然有上界且有下界。注意数列的定义域都是正整数。要看是不是正向级数,是的话是充分必要条件,不是的话,是前者是后者的充分...

相似回答