三相异步电动机正反转工作原理

如题所述

三相异步电动机工作原理之转动原理

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2019-11-02

正向启动过程

按下起动按钮SB2,接触器KM1线圈通电,与SB1并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。

停止过程

按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。

反向起动过程

按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。

扩展资料:

主要电气元件:按钮开关3个,接触器2个,热过载1个,最好加3个熔断器为保护3条火线用。

电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。

三相异步电动机正反转控制的安全措施

电动机的正反转控制操作中,如果错误地使正转用电磁接触器和反转用电磁接触器同时动作,形成一个闭合电路后会怎么样呢?三相电源的L1相和L3相的线间电压,通过反转电磁接触器的主触头,形成了完全短路的状态,所以会有大的短路电流流过,烧坏电路。所以,为了防止两相电源短路事故,接触器KM1和KM2的主触头决不允许同时闭合。

三相异步电动机接触器联锁的正反转控制的优点:工作安全可靠。

缺点:操作不便。因电动机从正转变为反转时,必须先按下停止按钮后,才能按反转启动按钮,否则由于接触器的联锁作用,不能实现反转。为克服此线路的不足,可采用按钮联锁或按钮和接触器双重联锁的正反转控制线路。

参考资料:百度百科-三相异步电动机正反转控制原理图

本回答被网友采纳
第2个回答  推荐于2019-10-12

1,正向启动过程

按下起动按钮SB2,接触器KM1线圈通电,与SB1并联的KM1的辅助常开触点闭合,以保证KMl       线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。

2,停止过程

按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持   续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。

3,反向起动过程

按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2      线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。

扩展资料:

作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。 与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。

按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

原理分析

电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

使用了按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。另外,由于应用的接触器联锁,所以只要其中一个接触器得电,其长闭触点就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护了电机,同时也避免在调相时相间短路造成事故,烧坏接触器。

参考资料百度百科:三相异步电动机正反转控制原理图

本回答被网友采纳
第3个回答  推荐于2017-09-21

  

  正向启动过程

  按下起动按钮SB2,接触器KM1线圈通电,与SB1并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。

  停止过程

  按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。

  反向起动过程

  按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。

第4个回答  推荐于2016-12-01
大家知道,三相异步电动机要想使其反转,三相电源线,只要调换其中两相即可实现。那么,就需要多用一只接触器,将预先倒好相线的电源接到电机上。同时经过连锁触点断开正传的接触器,正反转的转换都由按钮控制接触器执行,两接触器必须互相连锁。以免损坏设备。本回答被提问者和网友采纳

三相异步电动机的正反转是怎么回事?
- 时间继电器KT的延时断开触点在设定的时间后断开,使得KM3线圈失电,断开电动机与电源的连接,制动结束。通过这种方式,三相异步电动机可以实现正反转的转换和能耗制动。

三相异步电动机正反转控制原理图的电气原理分析
原理就是:在发电机内部有一个由发动机带动的转子(旋转磁场)。磁场外有一个子绕组,绕组有3组线圈(三相绕组),三相绕组彼此相隔120°电角。当转子旋转时,旋转磁场使固定的定子绕组切割磁力线(或者说使电动势绕组中通过的磁通量发生变化)而产生电动线圈所能产生的电动势的大小,和线圈通量的强弱、磁极的...

三相异步电动机正反转控制原理图电气原理说明
三相异步电动机的正反转控制原理图揭示了电机运转方向改变的电气控制逻辑。该控制逻辑涉及两个主要接触器:正转接触器KM1和反转接触器KM2。在正常工作时,KM1闭合,电机连接到三相电源,并按照U-V-W的相序接线,从而使电机正向运转。当需要电机反转时,KM1断开,KM2闭合,此时电源的相序变为W-V-U,电...

三相异步电动机怎么实现正反转?
三相电机正反转的要点是换相,让三相存在120°的相位差,从而出现正反转的情况。想要单相电机正反转,就要搞清楚单相电机能够启动的原因。一、原理:在启动绕组后串联合适容量的电容让两个绕组的相位差相差90°,从而产生磁场旋转,如果这个连接方式记为正转;那么调换一下接进电容的电源线,电机就会产生相...

三相异步电动机正反转控制原理图电气原理说明
三相异步电动机正反转控制原理图展示了电机的启动、停止与反转控制过程。控制回路采用两个接触器,正转接触器KM1与反转接触器KM2。KM1的三对主触头闭合时,三相电源按照U-V-W顺序接入电机,实现正向旋转。当KM1断开且KM2闭合时,电源相序变为W-V-U,电机反向旋转。为了防止KM1与KM2同时闭合导致电源...

三相异步电动机正反转控制线路原理图
1. 电路图与控制电路综合图展示了一种三相异步电动机的正反转控制原理。2. 原理概述:通过使用两个电磁接触器KM1和KM2,实现对电动机电源电压相的调换,从而控制电动机的正反转。3. 正转控制:当电磁接触器KM1闭合时,电源和电动机通过KM1的主触头连接,使得L1与U相、L2与V相、L3与W相相连,电动...

380v电机用手柄直接控制正反转怎么接?
一、三相异步电动机正反转控制的工作原理 在实际应用中,常常需要生产机械改变运动方向,如工作台前进、后退;电梯的上升、下降等,这就要求电动机能实现正、反转。对于三相异步电动机来说,可以使用两个接触器来改变电动机绕组相序来实现正、反转。电动机正、反转控制线路如图1所示。二、电动机正、反转...

三相异步电动机接触器联锁正反转控制电路原理?
1. 正转操作:按下SB2按钮,KM1线圈得电,引发KM1主触点闭合,从而使得电动机开始正转。2. 自锁实现:随着KM1线圈的得电,KM1的动合触点也闭合,实现了自锁功能,确保电动机持续运转。3. 互锁实现:同时,KM1的动断棚桥触点断开,导致KM2线圈支路断开,这样就实现了互锁,防止了反转的启动。4. ...

三相异步电动机正反转控制线路原理图
原理:图中使用了2个分别用于正转和反转的电磁接触器KM1、KM2,对这个电动机进行电源电压相的调换。此时,如果正转用电磁接触器KM1,电源和电动机通过接触器KM1主触头,使L1相和U相、L2相和V相、L3相和W相对应连接,所以电动机正向转动。如果接触器KM2动作,电源和电动机通过KM2主触头,使L1相和W相...

画出三相异步电动机正反转动控制电路电路图并说明原理?
三相异步电动机的正反转动控制电路图包含以下组件:两个起保停电路,用于控制电动机的正转和反转。当按下正转启动按钮SB2时,X0常开触点闭合,导致Y0线圈通电并保持状态,从而使得KM1线圈得电,电动机开始正转。若按下停止按钮SB1,X2常闭触点断开,使得Y0线圈失电,电动机停止转动。电路图中,Y0与Y1...

相似回答