谁能帮忙总结一下高中有机化学中各种官能团能发生的反应类型啊,越详细越好

例如“碳碳双键能发生水化,氧化,还原,加聚反应”

1。卤化烃:官能团,卤原子 在碱的溶液中发生“水解反应”,生成醇 在碱的醇溶液中发生“消去反应”,得到不饱和烃
2。醇:官能团,醇羟基 能与钠反应,产生氢气 能发生消去得到不饱和烃(与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去) 能与羧酸发生酯化反应 能被催化氧化成醛(伯醇氧化成醛,仲醇氧化成酮,叔醇不能被催化氧化)
3。醛:官能团,醛基 能与银氨溶液发生银镜反应 能与新制的氢氧化铜溶液反应生成红色沉淀 能被氧化成羧酸 能被加氢还原成醇
4。酚,官能团,酚羟基 具有酸性 能钠反应得到氢气 酚羟基使苯环性质更活泼,苯环上易发生取代,酚羟基在苯环上是邻对位定位基 能与羧酸发生酯化
5。羧酸,官能团,羧基 具有酸性(一般酸性强于碳酸) 能与钠反应得到氢气 不能被还原成醛(注意是“不能”) 能与醇发生酯化反应
6。酯,官能团,酯基 能发生水解得到酸和醇

醇、酚:羟基(-OH);伯醇羟基可以消去生成碳碳双键,酚羟基可以和NaOH反应生成水,与Na2CO3反应生成NaHCO3,二者都可以和金属钠反应生成氢气

醛:醛基(-CHO); 可以发生银镜反应,可以和斐林试剂反应氧化成羧基。与氢气加成生成羟基。

酮:羰基(>C=O);可以与氢气加成生成羟基

羧酸:羧基(-COOH);酸性,与NaOH反应生成水,与NaHCO3、Na2CO3反应生成二氧化碳

硝基化合物:硝基(-NO2);

胺:氨基(-NH2). 弱碱性

烯烃:双键(>C=C<)加成反应。

炔烃:三键(-C≡C-) 加成反应

醚:醚键(-O-) 可以由醇羟基脱水形成

磺酸:磺基(-SO3H) 酸性,可由浓硫酸取代生成

腈:氰基(-CN)

酯: 酯 (-COO-) 水解生成羧基与羟基,醇、酚与羧酸反应生成

注: 苯环不是官能团,但在芳香烃中,苯基(C6H5-)具有官能团的性质。苯基是过去的提法,现在都不认为苯基是官能团

官能团:是指决定化合物化学特性的原子或原子团. 或称功能团。
卤素原子、羟基、醛基、羧基、硝基,以及不饱和烃中所含有碳碳双键和碳碳叁键等都是官能团,官能团在有机化学中具有以下5个方面的作用。
1.决定有机物的种类
有机物的分类依据有组成、碳链、官能团和同系物等。烃及烃的衍生物的分类依据有所不同,可由下列两表看出来。
烃的分类法:
烃的衍生物的分类法:
2.产生官能团的位置异构和种类异构
中学化学中有机物的同分异构种类有碳链异构、官能团位置异构和官能团的种类异构三种。对于同类有机物,由于官能团的位置不同而引起的同分异构是官能团的位置异构,如下面一氯乙烯的8种异构体就反映了碳碳双键及氯原子的不同位置所引起的异构。
对于同一种原子组成,却形成了不同的官能团,从而形成了不同的有机物类别,这就是官能团的种类异构。如:相同碳原子数的醛和酮,相同碳原子数的羧酸和酯,都是由于形成不同的官能团所造成的有机物种类不同的异构。
3.决定一类或几类有机物的化学性质
官能团对有机物的性质起决定作用,-X、-OH、-CHO、-COOH、-NO2、-SO3H、-NH2、RCO-,这些官能团就决定了有机物中的卤代烃、醇或酚、醛、羧酸、硝基化合物或亚硝酸酯、磺酸类有机物、胺类、酰胺类的化学性质。因此,学习有机物的性质实际上是学习官能团的性质,含有什么官能团的有机物就应该具备这种官能团的化学性质,不含有这种官能团的有机物就不具备这种官能团的化学性质,这是学习有机化学特别要认识到的一点。例如,醛类能发生银镜反应,或被新制的氢氧化铜悬浊液所氧化,可以认为这是醛类较特征的反应;但这不是醛类物质所特有的,而是醛基所特有的,因此,凡是含有醛基的物质,如葡萄糖、甲酸及甲酸酯等都能发生银镜反应,或被新制的氢氧化铜悬浊液所氧化。
4.影响其它基团的性质
有机物分子中的基团之间存在着相互影响,这包括官能团对烃基的影响,烃基对官能团的影响,以及含有多官能团的物质中官能团之间的的相互影响。
① 醇、苯酚和羧酸的分子里都含有羟基,故皆可与钠作用放出氢气,但由于所连的基团不同,在酸性上存在差异。
R-OH 中性,不能与NaOH、Na2CO3反应;
C6H5-OH 极弱酸性,比碳酸弱,不能使指示剂变色,能与NaOH反应,不能与Na2CO3反应;
R-COOH 弱酸性,具有酸的通性,能与NaOH、Na2CO3反应。
显然,羧酸中,羧基中的羰基的影响使得羟基中的氢易于电离。
② 醛和酮都有羰基(>C=O),但醛中羰基碳原子连接一个氢原子,而酮中羰基碳原子上连接着烃基,故前者具有还原性,后者比较稳定,不为弱氧化剂所氧化。
③ 同一分子内的原子团也相互影响。如苯酚,-OH使苯环易于取代(致活),苯基使-OH显示酸性(即电离出H+)。果糖中,多羟基影响羰基,可发生银镜反应。
由上可知,我们不但可以由有机物中所含的官能团来决定有机物的化学性质,也可以由物质的化学性质来判断它所含有的官能团。如葡萄糖能发生银镜反应,加氢还原成六元醇,可知具有醛基;能跟酸发生酯化生成葡萄糖五乙酸酯,说明它有五个羟基,故为多羟基醛。
5.有机物的许多性质发生在官能团上
有机化学反应主要发生在官能团上,因此,要注意反应发生在什么键上,以便正确地书写化学方程式。
如醛的加氢发生在醛基碳氧键上,氧化发生在醛基的碳氢键上;卤代烃的取代发生在碳卤键上,消去发生在碳卤键和相邻碳原子的碳氢键上;醇的酯化是羟基中的O—H键断裂,取代则是C—O键断裂;加聚反应是含碳碳双键(>C=C<)(并不一定是烯烃)的化合物的特有反应,聚合时,将双键碳上的基团上下甩,打开双键中的一键后手拉手地连起来。
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-07-03
高中化学有机归纳
一.各类有机化合物命名规则
表1 各类有机化合物命名规则
类别 主链的选择 碳原子编号
烷烃 选择含碳原子最长的碳链为主链,命名某烷 在主链上以连有最简单取代基(甲基)近端为起点编号
不饱和烃 选择含有不饱和碳原子的最长碳链为主链称某不饱和烃 在主链上以不饱和碳原子近端为起点,进行编号
芳香烃 以芳香环为主体(苯、萘…) 以芳香环上连有取代基的碳原子为起点编号
烃的衍生物 选择含有官能团的碳原子的最长碳链为主链,确定为某衍生物 以连有官能团的碳原子为起点,进行编号(或近端)

二.各类主要有机物的组成通式
类别 结构特点(官能团) 代表物 一般表示式 分子通式
烷烃 只含C—C单键 CH4 R—CH3 CnH2n+2
烯烃 含一个C=C双键 CH2=CH2 R—CH=CH2 CnH2n(n≥2)
炔烃 含一个C≡C参键 CH≡CH R—C≡CH CnH2n—2(n≥2)
苯及其同系物 含一个苯环 � ��R CnH2n—6(n≥2)
饱和一元卤代烃 含一个卤原子 CH3CH2Br R—CH2X CnH2n+1X
饱和一元醇 烃基饱和含一个—OH CH3CH2OH R—OH CnH2n+1OH
一元酚 羟基(—OH)直接连苯环 ��OH
CnH2n—6O
饱和一元醛 烃基饱和含一个—CHO
CnH2nO
饱和一元羧酸 烃基饱和含一个 CnH2nO2
饱和一元羧酸酯 饱和一元羧酸与饱和一元醇酯化 CnH2nO2
三.重要有机反应类型与涉及主要有机物
反应类型 反应特点 涉及的主要有机物类别
取代 与碳相连的H、官能团 饱和烃、苯和苯的同系物,卤代烃、醇、酚
加成 发生在不饱和碳上 不饱和烃、苯和苯的同系物、醛
消去 生成不饱和键 卤代烃、醇
酯化 羧基与羟基缩合 醇、羧酸、糖类
水解 烃衍生物与水复分解 卤代烃、酯、二糖、多糖、多肽、蛋白质
氧化 燃烧 CxHyOz+(x+ )O2 xCO2 + y/2H2O

不完全 加氧或去氢 不饱和烃、苯的同系物、醇、醛、糖类
还原 加氢或去氧 不饱和烃、醛、单糖
聚合 加聚 只生成一种高聚物 烯烃、二烯烃
缩聚 除高分子还脱下小分子 苯酚与甲醛、二元羧酸与二元醇、氨基酸
注意:
1.能发生取代(包括取代,水解,酯化):
烷烃与卤素单质:卤素蒸汽,光照; 苯与苯的同系物与:卤素单质在铁做催化剂的条件下
浓硝酸在水浴50-60度 浓硫酸水浴70-80度; 醇与氢卤酸的反应:新制氢卤酸
卤代烃的水解:氢氧化钠水溶液; 酯类的水解:无机酸或碱催化
2.能发生加成
烯烃的加成:氢 卤化氢 水 卤素单质 ; 炔烃得加成:氢 卤化氢 水 卤素单质
二烯烃的加成:氢 卤化氢 水 卤素单质; 苯及苯的同系物:氢 氯
苯乙烯的加成:氢 卤化氢 水 卤素单质; 不饱和烃的衍生物的加成
含醛基的化合物:氢氰酸 氢; 酮类物质的加成:氢
油酸,油酸盐,油酸某酯,油的加成:氢
3.能发生消去 卤代烃和某些醇
4.变性 蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用。
5.裂化 在一定条件下,将相对分子质量较大、沸点较高的烃断裂为相对分子质量较小、沸点较低的烃的过程。
6.裂解 石油化工生产过程中,以比裂化更高的温度(700℃~800℃,有时甚至高达1000℃以上),使石油分镏产物(包括石油气)中的长链烃断裂成乙烯、丙烯等短链烃的加工过程。
7.皂化 工业上生产肥皂的过程是:将油脂和氢氧化钠溶液按一定比例放在皂化锅内,用蒸汽加热并搅拌,油脂水解,生成高级脂肪酸钠,甘油和水的混合物.然后向皂化锅中加入食盐,应高级脂肪酸钠分子中有一个很长的非极性的烃基,在强极性的电解质中溶解度很小,从中析出悬浮在上层;下层是甘油和食盐的混合溶液.取出上层,加入松香,硅酸钠等添加剂,进行亚率,干燥,成型,即得到肥皂.
8.既能发生氧化反应,又能发生还原反应的物质
四.1.含醛基的物质:所有醛,甲酸,甲酸盐,甲酸某酯,葡萄糖,麦芽糖
2.不饱和烃:烯烃,炔烃,二烯烃,苯乙烯
3.不饱和烃的衍生物
4. 同系物和同分异构体的比较
概念 同系物 同分异构体
外延 有机化合物
内涵 相同 结构、性质相似 分子组成相同
相异 分子组成相差(n个CH2) 分子结构相异
典型示例 (1)烃: (通式)
CH4、CH3—CH3…CnH2n+2
CH2=CH2、CH3CH=CH2…CnH2n
CH≡CH、CH3C≡CH…CnH2n—2

(2)烃的衍生物
CH3OH、C2H5OH…CnH2n+2O
HCHO、CH3CHO…CnH2nO
HCOOH、CH3COOH…CnH2nO2 (1)碳链异构
CH3CH2CH2CH3
(2)官能团类别异构
CH3CH=CH2、

、 、

(3)官能团位置异构
CH3CH2CH2OH、

、 、

要点 (1)均为互称
(2)概念不可混淆:讨论同系物时不涉及同分异构讨论同分异构体时不涉及同系物
五.除杂质
乙醇(氯化钠) - 蒸馏
氯化钠(NH4Cl) - 加热
KNO3(氯化钠) H2O 重结晶、过滤
甲苯(苯酚) 氢氧化钠溶液 分液
溴苯(溴) 氢氧化钠溶液 分液
乙醇(水) CaO 蒸馏
甲苯(乙醛) 水 分液
甲烷(硫化氢) 氢氧化钠或硫酸铜溶液 洗气
苯酚(苯) 加氢氧化钠溶液分层取水层,向水层中通CO2 分液、过滤
KI溶液(I2) CCl4 萃取
硬脂酸钠溶液(NaI) 半透膜 渗析
乙酸(甲酸) 醋酸钠晶体 蒸馏
CO2(Cl2、HCl) FeCl2溶液或饱和碳酸氢钠溶液 氧化还原(氯化氢溶解)
Fe2+(Fe3+) Fe屑 氧化还原
烷(烯、炔)(气) 溴水(不能用酸性KMnO4) 洗气
NaCl(Na2CO3、NaHCO3) 加足量盐酸 蒸发
CO2(SO2) KMnO4或品红 洗气
Cl2(HCl) 饱和氯化钠溶液 洗气
氢氧化钠(碳酸钠) 氢氧化钙 过滤
SiO2(CaCO3、CaO) HCl 过滤
CO2(CO) CuO 加热
硬脂酸钠溶液(甘油) 盐 盐析、过滤
CO(CO2) 氢氧化钠溶液 洗气
气态烷、烯、炔(硫化氢、CO2、SO2) 氢氧化钠溶液 洗气
苯(甲苯) 酸性KMnO4溶液 分液
蛋白质(饱和硫酸钠溶液或硫酸铵溶液) 半透膜 渗析
甲烷(甲醛) 水 洗气
苯(苯磺酸) 水或氢氧化钠 分液
硝基苯(硝酸) 氢氧化钠溶液 分液
淀粉溶液(氯化钠) 蒸馏水 渗析
综上所述,物质分离提纯的方法主要有物理方法和化学方法。
(1)物理方法:过滤、分液、萃取、蒸馏、结晶、洗气、直接加热等。
(2)化学方法:化学方法是指利用物质化学性质的差异,选用一种或几种试剂使之于混合物中的某物质反应,生成沉淀、气体或生成不于水混溶的液体,或使其中之一反应生成易溶于水的物质,然后再用物理方法分离。
I.化学方法选择试剂的原则:
1.选择的试剂只与杂质反应,而不能与被提纯的物质反应。2.所选试剂不能带入新的杂质。
3.试剂与杂质反应后的生成物与被提纯物质要容易分离。4.提纯过程要尽量做到步骤简单,现象明显、容易分离。5.气体杂质若为CO、H2等不能用点燃的方法。
II.常用的化学方法举例如下:(括号内物质为杂质,破折号后为选用的试剂)
1.利用生成沉淀除杂质:NaCl(Na2CO3) ——CaCl2;2.利用生成气体除杂质:3.利用酸式盐与正盐的相互转化关系:NaHSO3(Na2SO3)——SO24.利用氧化还原反应除杂质:FeCl3(FeCl2)——Cl2 5.利用两性反应除杂质:Fe2O3(Al2O3)——氢氧化钠6.利用其他化学性质除杂质:Cu(Fe)
7.除去气体中的杂质:
①用干燥剂(注意选用原则)吸收水蒸汽。②酸性杂质用碱液吸收:H2(CO2、H2S); C2H4(CO2,SO2).
③若酸性气体中含有较强的酸性气体,可用与酸性气体对应的酸式盐饱和溶液吸收:CO2(HCl),H2S(HCl)④碱性杂质气体可用酸吸收。⑤氯气中含HCl,可用水或饱和食盐水吸收。
⑥杂质气体为O2时,可用加热的铜网。⑦杂质气体为CO,H2时,可用加热的CuO粉末除去。
六.物理性质
1.状态
固态:饱和高级脂肪酸,脂肪,TNT,萘,蒽,苯酚,葡萄糖,果糖,麦芽糖,淀粉,纤维素,醋酸(16.6度以下)
气态:c数在4以下的烷,稀,炔,甲醛,一氯甲烷,新戊烷
液态:硝基苯,溴乙烷,乙酸乙酯,油酸。 石油,乙二醇,丙三醇
2.气味
无味:甲烷,乙炔(常因混有杂质而带臭味) 稍有气味:乙烯
特殊气味:甲醛,甲酸,乙酸,乙醛
甜味:乙二醇,丙三醇,蔗糖,葡萄糖
香味:乙醇,低级酯 杏仁味:硝基苯
3.颜色
白色:葡萄糖,多糖 淡黄色:TNT,不纯的硝基苯 黑色或深棕色:石油
4.密度
比水轻:苯,液态烃,一氯代烃,乙醇,乙醛,低级酯,汽油
比水重:硝基苯,溴苯,乙二醇,丙三醇,四氯化碳,氯仿,溴代烃,碘代烃
5.挥发性 乙醇,乙醛,乙酸 6.升华性 萘,蒽
7.水溶性
不溶:高级脂肪酸,酯,硝基苯,溴苯,甲烷,以稀,苯及同系物,萘,蒽,石油,卤代烃,TNT,氯仿,四氯化碳
能溶:苯酚(0度是微溶) 易溶:甲醛,乙酸,乙二醇,苯磺酸 微溶:乙炔,苯甲酸
与水浑溶:乙酸,苯酚(70度以上),乙醛,甲酸,丙三醇
七.最简式相同的:
1. CH-----C2H2,C4H4(乙烯基乙炔),C6H6(苯,棱晶烷,盆烯),C8H8(立方烷,苯乙烯)
2. CH2O-----甲醛,乙醇,甲酸甲酯,葡萄糖
3. CH2-----烯烃和环烷烃
4. CnH2no-----饱和一元醛,饱和一元酮,
5. 炔烃与3倍于其碳原子数的苯及苯的同系物
八.能与溴水反应退色或变色的物质:
1.不饱和烃:烯烃,炔厅,二烯烃,苯乙烯等2.不饱和烃的衍生物
九.能萃取溴而使溴退色的物质
1.上层变无色的:溴代烃,CS2等
2.下层变无色的:直馏汽油,煤焦油,苯及苯的同系物,低级脂,液态环烷烃,液态饱和烃等
十.能使酸性高锰酸钾退色的物质
1.不饱和烃2.苯的同系物3.不饱和烃的衍生物4.含醛基的物质(醛,甲酸,甲酸盐,甲酸某脂)
5.还原性的糖6.酚类7.石油产品8.煤产品9.天然橡胶
十一.蛋白质变质的条件
1.加热2.紫外线3.重金属盐离子4.某些有机物
十二.有机物的燃烧规律
1. 烃完全燃烧前后物质的量的变化----CxHy
若y=4,燃烧前后物质的量相同;若y<4,燃烧后物质的量减少;若y〉4,燃烧后物质的量增加
2. 炭的质量百分含量相同的有机物(最简式可以不同),只要总质量已定,以任意比混合,完全燃烧后产生的二氧化碳的量总之一个定值。
3. 不同的有机物完全燃烧时,若生成的二氧化碳和水的物质的量值比相同,则他们分子中c数与H数之比也相同。
4. 烃类完全燃烧时的耗氧规律:
CxHyOz+(x+ )O2 xCO2 + y/2H2O
相同条件下等物质的量的烃完全燃烧,(x+y/4)值越大,耗氧越多。
质量相同的有机物,其含氢的百分率越大,,耗氧越多。
等物质的量同时含相同碳原子的烷烃,烯烃,炔烃,耗氧量依次减少0.5mol。
充分燃烧aL的气态烃,当恢复到相同状态时,气体体积减少了naL,则原来烃的氢原子数为4(n-1)。
十三.有机高分子
1.化合物
烃、醇、醛、羧酸、酯、葡萄糖、蔗糖等有 机化合物的相对分子质量都比较低,如蔗糖的相对分 子质量是342,硬脂酸甘油酯的相对分子质量是890, 它们的相对分子质量很少上千,通常称它们为低分子 化合物,或简称小分子。相反,淀粉的相对分子质量从 几万到几十万,蛋白质的相对分子质量从几万到几百 万或更高,核蛋白的相对分子质量则高达几千万。通常 把它们称为高分子化合物,简称高分子。淀粉、纤维素、 蛋白质、聚乙烯、聚氯乙烯、酚醛树脂等物质都属于高 分子化合物。由于高分子化合物大部分是由小分子通 过聚合反应制得的,所以也常被称为聚合物或高聚物。
2.结构特点
结构与小分子有很大的不同。单个高分子是由一个个链节连接起来的,成千上万的链节常常连成一条长链。
高分子最普通、最重要的结构是长链状的。例如,聚乙烯、聚氯乙烯的长链就是由C—C键连接的,淀粉和 纤维素的长链则是由C—C键和C—O键相连接的。 可以想象,当这种多条高分子链聚集在一起时,相互间 的缠绕使得许多分子间接触的地方以分子间作用力而紧密结合,这就使高分子材料的强度大大增加,相对分子质量越大,相互作用的分子间力就越强。线型结构的高分子,可以不带支链,也可以带支链
高分子链上如果还有能起反应的官能团,当它跟 别的单体或别的物质发生反应时,高分子链之间将形 成化学键,产生一些交联,形成网状结构,这就是高分子的体型(网状)结构,硫化橡胶就是这样 的例子。
3.化合物的基本性质
由于相对分子质量大及其结 构的特点,因而它们具有与小分子物质不同的一些性 质。
(1)溶解性
线型结构能溶解在适当的溶剂里,但溶解过程比小分子缓 慢;而体型结构的(如橡胶)则不容易溶解,只是有一定程度的胀大。
(2)热塑性和热固性
聚乙烯塑料受热到一定温度范围时,开始软化, 直到熔化成流动的液体。熔化的聚 乙烯塑料冷却后又变固体,加热后又熔化。这种现象就是线型高分子的热塑性。根据这一性质制成的高分子材料具有良好的可塑性,能制成薄膜、拉成丝或压制成所需要的各种形状,用于工业、农业及日常生活等。 有些体型高分子一经加工成型就不会受热熔化,因而具有热固性,例如酚醛塑料等。
(3)强度
高分子材料的强度一般都比较大。
(4)电绝缘性
高分子化合物链里的原子是以共价键结合的,一 般不易导电,所以高分子材料通常是很好的电绝缘材料,可广泛应用于电气工业上。例如,制成电器设备零件、电线和电缆的护套等。
十四.肥皂和洗涤剂
洗衣粉是肥皂的代替物,是用化学方法合成的分子中含有亲水性原子团和亲油性原子团的物质,即合成洗涤剂。目前常用的合成洗涤剂主要是烷基苯磺酸钠,它的分子组成和硬脂酸钠很相似,合成洗涤剂分子中的亲油性原子团具有更强的亲油作用,亲水性原子团具有更强的亲水作用,去污能力比肥皂更强。

参考资料:备战2010有机化学多套复习提纲

第2个回答  2010-07-02
双键(三键):氧化,加成,加聚
酚:氧化,酸性,取代.显色
羟基:置换,氧化,消去,缩水
醛基:氧化,还原
羧基:酸性,酯化本回答被提问者采纳
第3个回答  2010-06-30

高中有机化学中各种官能团的性质
高中有机化学中官能团的性质有:1、卤化烃:官能团卤原子,在碱的溶液中发生水解反应生成醇,在碱的醇溶液中发生消去反应得到不饱和烃。2、醇:官能团醇羟基,能与钠反应产生氢气,能发生消去得到不饱和烃,能与羧酸发生酯化反应。3、醛:官能团醛基,能与银氨溶液发生银镜反应,能与新制的氢氧化铜溶液...

高二所有官能团所能发生的化学反应
1。卤化烃:官能团,卤原子 在碱的溶液中发生“水解反应”,生成醇 在碱的醇溶液中发生“消去反应”,得到不饱和烃 2。醇:官能团,醇羟基 能与钠反应,产生氢气 能发生消去得到不饱和烃(与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去) 能与羧酸发生酯化反应 能被催化氧化成醛(...

高中有机化学中各种官能团的性质
高中有机化学中常见的官能团及其性质如下:1. 羟基(-OH):羟基是醇和酚的主要官能团。醇羟基可以发生取代反应(如酯化反应)、氧化反应(如氧化为醛或酮)和消去反应(如生成烯烃)。酚羟基具有弱酸性,可以与碱反应,也可以发生取代反应(如与卤代烃反应)和氧化反应(如氧化为醌)。2. 羧基(-COOH...

高中化学 所有有机化学的官能团性质,反应类型,引入官能团,反应条件...
加成反应:有机物分子里不饱和的碳原子跟其他原子或原子团直接结合的反应。聚合反应:一种单体通过不饱和键相互加成而形成高分子化合物的反应。加聚反应:一种或多种单体通过不饱和键相互加成而形成高分子化合物的反应。消去反应:从一个分子脱去一个小分子(如水.卤化氢),因而生成不饱和化合物的反应。

高一下期有机化学,官能团,反应类型,麻烦高人帮我总结下(最好列张表格...
1。卤化烃:官能团,卤原子 在碱的溶液中发生“水解反应”,生成醇 在碱的醇溶液中发生“消去反应”,得到不饱和烃 2。醇:官能团,醇羟基 能与钠反应,产生氢气 能发生消去得到不饱和烃(与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去)能与羧酸发生酯化反应 能被催化氧化成醛(...

高一化学有机物各官能团所能发生的反应 详细并清楚的给分
3.-CHO(醛基)被氧化为羧酸:与银氨溶液发生银镜反应,与碱性氢氧化铜反应、4.-COOH(羧基) 酸性,与醇酯化。5.苯环 ,加成和取代 6.COOC(酯键),在酸性或碱性条件下水解为羧酸和醇。7.-Cl或-Br(统称卤原子) NaOH醇溶液里发生消去成烯,NaOH水溶液里水解成醇。绝对原创,呵呵。

跪求高中有机化学各种官能团能参加的反应 和哪些官能
2、醇:官能团:醇羟基;通式:R—OH 性质:1)跟活泼金属反应产生H2 2)跟卤化氢或浓氢卤酸反应生成卤代烃 3)脱水反应:乙醇:140℃分子间脱水成醚,170℃分子内脱水生成烯(能发生消去得到不饱和烃,与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去)4)催化氧化为醛或酮(伯醇氧化...

求高中有机化学所有的官能团的化学性质和化学方程式!求
1. 卤代烃:官能团为卤素原子。在碱性条件下水解生成醇;在碱性醇溶液中消去反应生成不饱和烃。2. 醇:官能团为羟基(-OH)。能与钠反应生成氢气;能发生消去反应生成不饱和烃(只有伯醇能发生消去反应);能与羧酸发生酯化反应;在一定条件下能被催化氧化成醛或酮。3. 醛:官能团为醛基(-CHO)。能与...

有机化学中官能团分别能发生什么反应归纳。
羟基:-OH 通式:R-OH 1:跟活泼金属发生置换反应。2:在一定条件下发生消去反应3:发生氧化反应(能使算性KMnO4溶液褪色、发生催化氧化、反应在空气中燃烧)4:可以与酸发生酯化(取代)反应。羧基:-COOH 通式:R-COOH 1:具有酸通性 2:与醇发生酯化反应 酯基:-COO- 通式:R-COOH-r 1:...

高中有机化学常见官能团的典型反应有那些?TELL ME !^-^
碳碳三键或双键:臭氧、高锰酸钾氧化;和卤素、氢卤酸、水等加成 卤素原子:水解;羟基:和氢卤酸取代;氧化为醛;和酸酯化。直接连在苯环上的是酚,可以发生氧化反应和跟溴水的取代反应。醚基:和极性试剂反应时在碳氧键断开,类似加成。醛基:氧化;还原;2个醛在碱性环境下加成。羰基:(醛基,...

相似回答