先算对应的齐次方程的解.
y'+P(x)y=0
y'/y=-P(x)
lny=-∫P(x)dx+C
y=ke^(-∫P(x)dx)
下面用常数变易法求解原方程的解.
设k为u(x)
y=u(x)e^(-∫P(x)dx)
y'=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)
代入得:
Q(x)
=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)+u(x)P(x)e^(-∫P(x)dx)
u(x)=∫Q(x)e^(∫P(x)dx)+C
y=e^(-∫P(x)dx)(∫Q(x)e^(∫P(x)dx)+C)
扩展资料:
定义
形如 (记为式1)的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。这里假设 , 是x的连续函数。
若 ,式1变为 (记为式2)称为一阶齐线性方程。
如果 不恒为0,式1称为一阶非齐线性方程,式2也称为对应于式1的齐线性方程。式2是变量分离方程,它的通解为 ,这里C是任意常数。
参考资料:百度百科——一阶线性微分方程
一阶线性非齐次微分方程y'=p(x)y+q(x)的通解是?
y'\/y=-P(x)lny=-∫P(x)dx+C y=ke^(-∫P(x)dx)下面用常数变易法求解原方程的解.设k为u(x)y=u(x)e^(-∫P(x)dx)y'=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)代入得:Q(x)=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)+u(x)P(x)e^(-∫P...
一阶线性非齐次微分方程y'=p(x)y+q(x)的通解是
如上图所示。
一阶非齐次线性方程的通解?
一阶线性非齐次微分方程 y'+p(x)y=q(x),通解为 y=e^[-∫p(x)dx]{∫q(x)e^[∫p(x)dx]dx+C},用的方法是先解齐次方程,再用参数变易法求解非齐次;
y1y2是一阶线性非齐次微分方程的两个特解,求通解
一阶线性非齐次微分方程 y' + P(x)y = q(x) 的通解是 y = C(y1-y2)+y1
一阶非齐次线性方程的两种解法
一、方程通解公式 一阶非齐次线性微分方程的解析式为:y'+p(x)=q(x),则其通解表达式如下:y=e^[-∫p(x)]dx{∫q(x)*e^[∫p(x)dx]dx+c}.二、通解公式的实际应用 本例中,p(x)=2x,q(x)=4x.本例中,p(x)=-1\/x,q(x)=2x^2.本例中,p(x)=1\/x,q(x)=sinx\/x.本...
非齐次微分方程的通解公式是什么啊?
非齐次微分方程的通解公式是:y'+p(x)y=Q(x)。这是一类具有非齐次项的线性微分方程,其中一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就...
一阶线性非齐次微分方程的求解求微分方程怎么解
一阶线性非齐次微分方程 y'+p(x)y=q(x),通解为 y=e^[-∫p(x)dx]{∫q(x)e^[∫p(x)dx]dx+C} 用的方法是先解齐次方程,再用参数变易法求解非齐次.《高等数学》教科书上都有的.
非齐次线性微分方程的通解是什么?
其中一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,它的通解是由其对应的齐次方程的通解加上其一个特解组成。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及...
一阶线性微分方程, 非齐次方程的通解公式 咋带的? 忘了 前面是看作齐次...
非齐次是y'+p(x)y=Q(x),通解公式是e^–∫pxdx[Qxe^∫pxdx dx+c]这个公式是可以直接用的,只要把原方程,化非齐次形式就行,而这个公式是看做齐次式就齐次式通解y=Ce^-∫pxdx将常数C转换Cx而将y=Cxe^-∫pxdx带入原方程中版求出Cx就是刚才那个公式,你可以用公式法求解,也可以用最...
一阶线性非齐次微分方程的特解
y(0)=1 0+C=1 C=1 y=sinx+cosx 对应的齐次线性方程式的通解 第二项是非齐次线性方程式(式1)的一个特解。由此可知,一阶非齐次线性方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和。形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一...