关于 具有n个结点的完全二叉树的深度为「log2n」+1的证明

如题所述

可用数学归纳法。
当n=1=2^1-1时显然。
假设当n<=2^k-1时具有n个结点的完全二叉树的深度为「log2n」+1,则
当n=2^k(以及2^k+1,...,2^(k+1)-1)时,由归纳假设知前2^k-1个结点构成深度为「log2n」+1的树,再由完全二叉树的定义知剩余的1(或2,...,2^k)个结点均填在第「log2n」+2层上(作为“叶子”),故深度刚好增加了1。
故n<=2^(k+1)-1时命题成立。证毕。
(首先最好能先从直观上理解:完全二叉树中:
第1层有1个结点;
第2层有2个结点;
第3层有4个结点;
……
第k层有2^(k-1)个结点;(前k层共有(2^k)-1个结点,故前面深度刚好是「log2(2^k-1)」+1=k-1+1=k)
第k+1层是剩余的结点。 )
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答