如何判断函数的可导性

如题所述

首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。

可导的函数一定连续;不连续的函数一定不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数

扩展资料:

如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。

函数f的图象是平面上点对  的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。

如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。

周期函数有以下性质:

(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则  也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)

(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2018-02-17
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
  函数可导的条件:
  如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
  可导的函数一定连续;不连续的函数一定不可导。
  可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
  如果一个函数在x0处可导,那么它一定在x0处是连续函数
  函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
  (2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。本回答被网友采纳
第2个回答  推荐于2017-12-16
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+),
f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
  函数可导的条件:
 
 如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条
件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
  可导的函数一定连续;不连续的函数一定不可导。
  可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
  如果一个函数在x0处可导,那么它一定在x0处是连续函数。
  函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
  (2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。本回答被提问者采纳
第3个回答  2019-12-21
即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
第4个回答  2021-03-29

判断可导性的三个依据是什么?
判断可导性的三个依据:1、函数在该点的去心邻域内有定义。2、函数在该点处的左、右导数都存在。3、左导数=右导数,这与函数在某点处极限存在是类似的。函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)在x0处可导,则必在点x0处连续。

判断可导性的三个依据是什么?
1、所有初等函数在定义域的开区间内可导。2、所有函数连续不一定可导,在不连续的地方一定不可导。 在大学,再加上用单侧导数判断可导性。3、函数在某点的左、右导数存在且相等,则函数在该点可导。函数在开区间的每一点可导,则函数在开区间可导。函数可导性的证明方法如下:1、首先求出x在0出的...

怎样判断一个函数是否可导
判断一个函数是否可导的方法如下:1、检查函数是否连续。如果函数在定义域内的每一点都连续,那么该函数是可导的。这是因为根据导数的定义,函数在某一点处的导数等于函数在该点处的变化率,如果函数在某一点处不连续,则其变化率不存在,因此该函数在该点处不可导。2、使用极限来判断导数是否存在。如果...

如何判断可不可导
一、函数连续性 要证明一个函数可导,必须先证明它的连续性。如果一个函数在某一个特定的点上不连续,那么它就不可导。二、函数极限是否存在 如果函数在特定点的极限存在,那么就可以判断它是否可导。如果这些极限的极限存在且相等,则此函数在该点处可导。三、函数是否间断 在函数不连续的点,函数不可...

如何判断导数的可导性?
判断函数导数可导性的三个关键点:1、所有初等函数在其定义域内开区间上是可导的。2、函数在某点的左导数和右导数连续是可导的必要不充分条件;如果在某点不连续,则在该点一定不可导。在高等数学中,利用单侧导数可以进一步判断可导性。3、如果函数在某点的左导数和右导数存在且相等,则该点可导。如...

判断函数可导有什么方法吗?
1、连续性:可导函数在其定义域内必须是连续的。换言之,函数的图形在任何一点上都没有跳跃或间断。2、光滑性:可导函数在定义域内的每一点上都有切线,即函数的变化率存在。这意味着函数在每一点上都是光滑的,没有突变或剧烈变化的部分。3、可微性:可导函数在其定义域内的每一点上都有定义良好...

怎么判断可不可导
5、应用拉格朗日中值定理:如果函数在[a,b]内连续,在(a,b)内可导,则函数在(a,b)内至少存在一个点c,使得f'(c)=[f(b)-f(a)]\/[b-a]。对于一些非常规的函数或者在某些特殊的点处,可导性需要通过更加深入的方法进行判断。函数的可导性与连续性是不同的概念,连续的函数不一定可导,可导...

怎样判断一个函数可导?
判断函数可导的方法如下:1、判断一个函数是否可导,需要检查它在每一点上是否都有导数。函数在该点处有定义。这是可导性的基本前提,如果函数在该点处没有定义,那么导数就无法计算。函数在该点处的极限存在。这意味着当x趋近于该点时,函数的值是有限的,而不是无穷大或无穷小。2、函数在该点处...

函数的可导性的判别方法有哪些?
函数可导性的判别方法包括以下几个要点:1. 函数在特定点的去心邻域内必须有定义。2. 函数在该点处的左导数与右导数均应存在。3. 左导数等于右导数。需要注意的是:- 函数在某点处极限存在是函数在该点可导的一个必要非充分条件。- 并非所有的函数都具有导数,且函数在某点可导并不意味着它在所有...

通过哪些方法可以判断一个函数是否具备可导性呢
一个函数是否具备可导性,可以通过以下几种方法来判断:1.导数的定义法:根据导数的定义,如果函数f在点x0处的极限存在且等于lim(h->0)[f(x0+h)-f(x0)]\/h,则称函数f在点x0处可导。通过计算该极限值是否存在,可以判断函数是否可导。2.导数的几何意义:函数的导数表示函数在该点的切线斜率。

相似回答