(4)在全波精密整流电路中,如果在原输人正弦信号中叠加直流量,则输出波形如何?

如题所述

如果只是整流没有滤波电路,整流后的波形与整流前的波形一样,只是负半的波形全部换到了横坐标的上方。
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-12-28
精密半波、全波整流电路结构原理图解

电子工程师笔记
2019-03-13
利用二极管(开关器件)的单向导电特性,和放大器的优良放大性能相结合,可做到对输入交变信号(尤其是小幅度的电压信号)进行精密的整流,由此构成精密半波整流电路。若由此再添加简单电路,即可构成精密全波整流电路。

二极管的导通压降约为0.6V左右,此导通压降又称为二极管门坎电压,意谓着迈过0.6V这个坎,二极管才由断态进入到通态。常规整流电路中,因整流电压的幅值远远高于二极管的导通压降,几乎可以无视此门坎电压的存在。但在对小幅度交变信号的处理中,若信号幅度竟然小于0.6V,此时二极管纵然有一身整流的本事,也全然派不上用场了。

在二极管茫然四顾之际,它的帮手——有优良放大性能的运算放大器的适时出现,改变了这种结局,二者一拍即合,小信号精密半波整流电路即将高调登场。请看图1。

图1 半波精密整流电路及等效电路

上图电路,对输入信号的正半波不予理睬,仅对输入信号的负半波进行整流,并倒相后输出。

(1)在输入信号正半周(0~t1时刻),D1导通,D2关断,电路等效为电压跟随器(图中b电路):

在D1、D2导通之前,电路处于电压放大倍数极大的开环状态,此时(输入信号的正半波输入期间),微小的输入信号即使放大器输入端变负,二极管D1正偏导通(相当于短接),D2反偏截止(相当于断路),形成电压跟随器模式,因同相端接地,电路变身为跟随地电平的电压跟随器,输出端仍能保持零电位。

(2)在输入信号负半周(t1~t2时刻),D1关断,D2导通,电路等效反相器(图中c电路):

在输入信号的负半波期间,(D1、D2导通之前)微小的输入信号即使输出端变正,二极管D1反偏截止,D2正偏导通,形成反相(放大)器的电路模式,对负半波信号进行了倒相输出。

在工作过程中,两只二极管默契配合,一开一关,将输入正半波信号关于门外,维持原输出状态不变;对输入负半波信号则放进门来,帮助其翻了一个跟头(反相)后再送出门去。两只二极管的精诚协作,再加上运算放大器的优良放大性能,配料充足,做工地道,从而做成了精密半波整流这道“大餐”。

如果调整反馈电阻R2的阻值,使R2=2R1,再与输入信号相混合,则形成全波精密整流电路,如图2所示。

图2 精密全波整流电路及波形图

将N1放大器的反馈电阻R2增大,使R2=2R1,使其将整流信号反相放大两倍后输出,再与输入信号相加,其整流的+10V与输入负半波的-5V相加,10+(-5)=5,恰好能将负半波“消灭”掉,得到全波整流电压。

所谓魔电(模电),如果能够识破其变身术,只剩下一个个的电路模型,又何魔之有?

对精密整电路的故障检测,其前提是:所有运算放大器,均是直流放大器,甚至可以施加直流电压信号来确定电路好坏。

(1)输入信号电压为零时,输出端(D2的负端为输出端),输出电压也为0V;

(2)正的电压信号输入时,输出端保持0V;

(3)负的电压信号输入时,IN=-OUT

常见全波精密整流电路形式:

(1)精密全波整流电路之一

图3 精密全波整流电路之一

如图3中的a电路所示,N1及外围电路构成正半波输入2倍压反相整流放大电路,N2为反相求和电路。若输入信号峰值为±2V的正弦波信号电压,则a点输出为-4V对应输入正半波的电压信号;此信号经在N1反相输入端与输入信号相加(-4V+2V=-2V),得到-2V的脉动直流(在后级电路需要正的采样电压时)输入信号,又经N2反相求和电路,得到2V脉动直流信号。电路起到全波或桥式整流电路同样的作用,但整流线性和精度得到保障。

该电路形式比之图3电路,采用一级反相加法器,为实用电路。另外,若令R1=R2=R4=R5,令R3=1/2R1,将偏置电路的参数改变后,电路全波整流性能仍然是相同的。同一功能电路,可以有多种设计模式,正所谓条条大道通罗马。

(2)精密全波整流电路之二

将图4全波整流电路的工作原理简述如下:输入正半波期间(Vi>0),N1输入端电压<0,D1通,D2断;同时正向输入电压送入N2同相输入端,D3、D4通。此时等效为电压跟随器电路,将正半波信号输送到Vo端,即Vi=Vo。

在输入负半波期间(Vi<0),N1的输出端>0,D1断,D2通;N2因输入负半波导致D4断,D3通,输出信号回路被阻断。此时N1变身为反相器电路,将输入负半波倒相后送至Vo端。

利用D1~D2的单向导电——通、断特性与放大器配合,巧妙地完成了全波整流任务。

(3)精密全波整流电路之三

将图5电路简述一下:此为高输入阻抗(输入信号进入N1、N2的同相输入端,输入信号电流近于零)全波整流电路,输入正半波期间,D1通,D2断,N2(此时为电压跟随器)将输入正半波送至Vo端;输入负半波期间,D1断,D2通,N1此时变身为2倍压同相放大器,其输出信号电压向Vi信号同时送入N2(此时变身为减法器),经相减后输出负向的全波整流电压。

分析该电路原理(如图5),除了采用电阻串联分压那把金钥匙之处,尚应注意以下两点:

1)确定电路的基本电路构成。如N1为2倍压反相放大器,N2为减法器电路;

2)动态中“变身倾向”的定性。如N2在输入正半波期间变身为电压跟随器。

掌握此两个要点,根据信号输入(动、静态或正、负半波状态)变化,把握放大器的“七十二变”,从而推导出输出端信号电压的变化规律。

对精密整电路的故障检测,前文已有述及,可更为简化为一个原则:输出为输入的绝对值。要么Vi=Vo,要么Vi=-Vo。此为检测其工作状态的依据。本回答被网友采纳

(4)在全波精密整流电路中,如果在原输人正弦信号中叠加直流量,则输出...
如果只是整流没有滤波电路,整流后的波形与整流前的波形一样,只是负半的波形全部换到了横坐标的上方。

欲在正弦波电压上叠加一个直流量,应选用的电路为( )。
【答案】:B根据各运算电路的基本概念可知,比例放大电路原理如下:反相比例放大电路输出电压与输入电压的相位相反;同相比例放大电路输出电压与输入电压的相位相同;差分比例放大电路的输出电压相位取决于两个输入端的电压V1和V2的大小,若V1>V2,则输出的相位与V1相同,反之,则相反。同相输入求和运算电...

全波整流电路的工作原理和图解
有载时平均输出电压是变压器次级半个绕组电压有效值的0.9倍。桥式全波整流电路:经常使用的整流电路是桥式全波整流电路。它的变压器次级只有一个绕组,接在由四只二极管组成的电桥上。四只管又分成两对,没对串联起来工作。当正弦交流电的正半周到来时,即变压器次级上端为正时,二极管DA和DC导通而二极管...

什么是波形因数?波形因数如何计算?
1.尽量减小晶闸管的控制角。2.当负载额定电压比输入交流电压的有效值低得多时,先用变压器降压后再进行整流。3.尽量采用单相全波可控整流或三相可控整流电路。如忽略了波形因数的影响,尽管电压表的读数还远未达到负载的额定电庄,但仍有可能烧毁电器,以至造成不应有的损失 可控整流电路中,,波形因数的...

lm741是什么芯片?LM741参数+LM741工作原理讲解
名称中的数字741表示有7个活动引脚,4个引脚(引脚2、3、4、7)能够接受输入,1个引脚(引脚6)是输出引脚。IC中的三角形代表运算放大器集成电路。每个引脚的功能如下: 1、电源引脚(引脚4和引脚7): 引脚4和引脚7分别是负电压和正电压电源端子。IC运行所需的电源来自这两个引脚,这些引脚之间的电压电平可以在5V到...

整流电路的作用原理
半波整流电路 半波整流电路是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。  变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在...

电子技术的应用在哪些地方?
与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。分布式开关电源供电系统分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大...

请问电气朋友,幅值1V的正弦波,如何进行全波整流?
1、这是中频小信号整流,因二极管有导通电压,用全桥整流肯定不行。应用运放组成的绝对值电路进行整流。2、出现半波的幅值一大一小,说明运放的比较端与信号的负端未连接好,有阻抗;第二原因的运放的电源有问题,正负不平衡。3、再有一个办法是将1到2V,频率1000Hz的正弦波信号叠加在一个3V的直流上...

注册电气工程师(供配电)基础考试都考什么?
4.3 了解高通、低通、带通电路与低通电路的对偶关系、特性5 信号发生电路5.1 掌握产生自激振荡的条件,RC型文氏电桥式振荡器的起振条件,频率的计算;LC型振荡器的工作原理、相位关系;了解矩形、三角波、锯齿波发生电路的工作原理,振荡周期计算5.2 了解文氏电桥式振荡器的稳幅措施;石英晶体振荡器的工作原理;各种振荡器的...

如何来做声音波形的频谱分析
这就是所说的失真信号。为避免失真信号的发生,在输入端使用低通滤波器以阻止频率大于半个取样频率的所有波形。在输出端,数字模拟转换器产生的粗糙的波形边缘实际上是由频率大于半个取样频率的波形组成的泛音。因此,位于输出端的低通滤波器也阻止频率大于半个取样频率的所有波形。声音CD中使用的取样频率是每秒44,100个...

相似回答