方程y=tan(x-y)所确定的函数的二阶导数

拜托,,,

 

~请首先关注【我的采纳率】

~如果不懂,请继续追问!
~如果你认可我的回答,请及时点击【采纳为最佳回答】按钮~
~如还有新的问题,在您采纳后还可以继续求助我二次!
~您的采纳是我前进的动力~~
O(∩_∩)O,记得好评和采纳,互相帮助
祝学习进步!

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-12-16
y'=sec²(x-y)*(x-y)'
y'=sec²(x-y)*(1-y')=sec²(x-y)-sec²(x-y)*y'
y'=sec²(x-y)/[1+sec²(x-y)]=1-1/[1+sec²(x-y)]

所以
y''=-1*{-1/[1+sec²(x-y)]²}*[1+sec²(x-y)]'
=1/[1+sec²(x-y)]²*2sec(x-y)*tan(x-y)sec(x-y)*(x-y)'
=1/[1+sec²(x-y)]²*2sec²(x-y)*tan(x-y)*(1-y')
=2sec²(x-y)*tan(x-y)/[1+sec²(x-y)]²*{1-sec²(x-y)/[1+sec²(x-y)]}
=2sec²(x-y)*tan(x-y)/[1+sec²(x-y)]³本回答被网友采纳
第2个回答  2013-12-13

方程y=tan(x-y)所确定的函数的二阶导数
所以 y''=-1*{-1\/[1+sec²(x-y)]²}*[1+sec²(x-y)]'=1\/[1+sec²(x-y)]²*2sec(x-y)*tan(x-y)sec(x-y)*(x-y)'=1\/[1+sec²(x-y)]²*2sec²(x-y)*tan(x-y)*(1-y')=2sec²(x-y)*tan(x-y)\/[1+sec...

方程y=tan(x-y)所确定的函数的二阶导数
~如果不懂,请继续追问!~如果你认可我的回答,请及时点击【采纳为最佳回答】按钮~~如还有新的问题,在您采纳后还可以继续求助我二次!~您的采纳是我前进的动力~~O(∩_∩)O,记得好评和采纳,互相帮助祝学习进步!

y=tan(x-y) 求二阶导数
y=tan(x-y)两边求导 y' = (1-y')\/cos²(x-y)y' = 1\/[1+cos²(x-y)]再次求导 y" = -2cos(x-y)[-sin(x-y)](1-y')\/[1+cos²(x-y)]²= sin(2x-2y)(1-y')\/[1+cos²(x-y)]²= sin(2x-2y){1 - 1\/[1+cos²(x-y)...

隐函数y=tan(x-y)的二阶导数
经济数学团队为你解答,满意请采纳!

y=tan(x-y) 求二阶导数 高数 求 y=tan(x-y)
y=tan(x-y)两边求导 y' = (1-y')\/cos²(x-y)y' = 1\/[1+cos²(x-y)]再次求导 y" = -2cos(x-y)[-sin(x-y)](1-y')\/[1+cos²(x-y)]²= sin(2x-2y)(1-y')\/[1+cos²(x-y)]²= sin(2x-2y){1 - 1\/[1+cos²(x-y)...

x-y=1二阶导数?
y=tan(x-y)两边求导 y' = (1-y')\/cos²(x-y)y' = 1\/[1+cos²(x-y)]再次求导 y" = -2cos(x-y)[-sin(x-y)](1-y')\/[1+cos²(x-y)]²= sin(2x-2y)(1-y')\/[1+cos²(x-y)]²= sin(2x-2y){1 - 1\/[1+cos²(x-y)...

y=tan(x+y)的隐函数调y的二阶导数
即y'=(sec(x+y))^2\/[1-(sec(x+y))^2]化简得: y'=-(sec(x+y))^2\/(tan(x+y))^2=- [csc(x+y)]^2 两边再对x求导得:y"=2csc(x+y)*csc(x+y)*ctg(x+y)*(1+y'), 再代入y',得:=2(csc(x+y))^2*ctg(x+y)*[1-(csc(x+y))^2]=-2(csc(x+y)...

求y=tan(x+y)所确定的隐函数的二阶导数
1、本题是隐函数的两次求导;2、隐函数、复合函数的求导都是使用链式求导;具体解答如下图:

求由方程y=tan(x+y)所确定的隐函数的二阶导数d2ydx2
由方程y=tan(x+y)两边直接对x求导,得y'=(1+y')sec2(x+y)∴两边继续对x求导,得y″=y″sec2(x+y)+2(1+y′)2sec2(x+y)tan(x+y)将y'=(1+y')sec2(x+y)代入,化简得y''=-2csc2(x+y)cot3(x+y).

求下列方程所确定的隐函数y的二阶导数:y=tan(x+y)
本题运用隐函数求导法则和导数的四则运算,再进行代入即可求得答案:

相似回答