蜂巢为什么选用六边形?

如题所述

早在公元四世纪的古希腊,数学家佩波斯就提出:蜂窝的优美形状,是自然界最有效劳动的代表。他当时猜想:人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建成的,他的这一猜想被称为“蜂窝猜想”,但很多年来没有人能够证明这一点。

 虽然蜂窝是一个三维体建筑,但每一个蜂窝都是六面柱体,而蜂蜡墙的总面积仅与蜂巢的截面有关。经过长期的观察和分析,人们发现蜜蜂蜂巢是一座十分精密的建筑工程,其大小刚好可以容纳一个蜜蜂幼虫。蜜蜂建巢时,青壮年工蜂负责分泌片状新鲜蜂蜡,每片只有针头大小。而另一些工蜂则负责将这些蜂腊仔细摆放到一定的位置,以形成竖直六面柱体。每一面蜂蜡隔墙厚度不到0.1毫米,误差只有0.002毫米。六面隔墙宽度完全相同,墙之间的角度正好是120度,形成一个完美的正六边形几何图形。

由此引出了一个数学问题,即寻找面积最大、周长最小的平面图形。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而直到最近,美国数学家黑尔宣称:在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长为最小.......

无论其证明结果如何,我们可以得出的结论是:正六边形蜂窝结构是大自然物竞天择的自然选择,它代表了自然界最有效劳动的天然成果。

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2016-12-02
蜂是宇宙间最令人敬佩的建筑专家。它们凭著上帝所赐的天赋本能,采用「经济原理」——用最少材料(蜂蜡),建造最大的空间(蜂房)——来造蜜蜂的家。

正六角形的建筑结构,密合度最高、所需材料最简、可使用空间最大,其致密的结构,各方受力大小均等,且容易将受力分散,所能承受的冲击也比其他结构大。

没有人知道蜜蜂到底是怎么想的,但无疑是使用最少的材料制作尽可能宽敞的空间。由此可见,如果蜂巢呈圆形或八角形,会出现空隙,如果是三角形或四角形,则面积会减小,所以在这些形状中六角形是效率最好的。
这种六角形所排列而成的结构叫做蜂窝结构。因这种结构非常坚固,故被应用于飞机的羽翼以及人造卫星的机壁。蜂巢内外面的巢穴(叫做巢房)刚好一半相互错开,相互组合六角形的边交叉的点是内侧六角形的中心。这是为了提高强度,防止巢房底破裂。另外,从剖面图可知,两面的巢房方向都是朝上的
工蜂在巢房中哺育幼虫,贮藏蜂蜜和花粉,蜂巢形成9~14度左右的角度,以防止蜂蜜流出。蜜蜂的生态和蜂巢的结构真是让人吃惊,可以说是自然界的鬼斧神工。可见,先不说仍不为人熟知的蜜蜂世界,仅从蜂巢来看,就可知在自然创造性方面人类智慧是远不及它们的。蜜蜂作为具有优良社会性的昆虫,从比人类历史更悠久的过去一直生存至今、繁衍生息,并为我们带来了蜂蜜、蜂王浆、蜂胶、花粉以及蜂蜡等许许多多的恩惠。在新世纪初,在制作巢框的过程中,蜜蜂的创造性和不可思议之处让我们陷入深思。本回答被提问者采纳
第2个回答  2006-12-18
简单说,在同一个圆里,内接正多边形边数越多,面积越大
比如,圆内接正12边形面积大于正10边形,正10边形大于正8边形
正方形大于正三角形,正三角形面积最小,
但是边数越多越浪费材料,这样面积S有一个关于边数的函数
同时,用的材料跟边数也有个函数,通过计算当边数=6时,用最少的材料作出最大空间(具体数学方程,查阅相关材料)
第3个回答  2021-01-02

蜂巢为何是六边形,原来都是蜜蜂经过周密计算的!好聪明!

第4个回答  2006-12-20
节省空间和材料
相似回答