高等数学,复变函数,请问复函数f(z)=z在复平面上解析吗?f(z)=z的共轭复数在复平面上解析吗?
第一个显然解析,所以f(z)是全平面上的解析函数。
因为解析必先满足可导,所以先考虑以上函数是否可导。
因为当△y和△x以不同速度收敛的时候,△f/△z的极限是不同的(例如△y=k△x,上式的比值就可k有关)。因此后者在整个复平面上处处不可导,所以不解析。
扩展资料:
以复数作为自变量和因变量的函数 ,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
设ƒ(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称ƒ(z)在z处是可导的,此极限值称为ƒ(z)在z处的导数,记为ƒ'(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。
这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数。
参考资料来源:百度百科--复变函数
高等数学,复变函数,请问复函数f(z)=z在复平面上解析吗?f(z)=z的共 ...
第一个显然解析,所以f(z)是全平面上的解析函数。因为解析必先满足可导,所以先考虑以上函数是否可导。因为当△y和△x以不同速度收敛的时候,△f\/△z的极限是不同的(例如△y=k△x,上式的比值就可k有关)。因此后者在整个复平面上处处不可导,所以不解析。
z的共轭复数为什么不解析
该复变函数不解析原因如下:z的共轭复数在复平面上不解析,这是因为在复变函数中,解析性的一个重要条件是函数在某一点的导数在该点的邻域内存在。而对于共轭复数来说,由于共轭复数的虚部互为相反数,所以在复平面上,共轭复数所对应的点关于实轴对称,这就导致了在复平面上,一个复数的共轭复数在该...
sinz的共轭在复平面上处处解析吗
不能。因为函数f(z)=z'在复平面上处处不解析。【注意:z'表示z的共轭】证明可以通过柯西-黎曼方程来完成。f(z)=u+iv=z'=x-iy,所以u=x,v=-y,所以四个偏导数为ux=1,uy=-1,所以不满足柯西-黎曼方程。所以f(z)不可导,从而不解析。因此在任何地方都不能展开成泰勒级数。
z的共轭复数的解析性
具有解析性。因为z的共轭复数是指实部相同但虚部符号相反的复数,而实部与虚部的连续性可以保证共轭复数的解析性,即在复平面上,z的共轭复数的函数值可以被表示为z的实部和虚部的解析函数的形式。从而可以得出,z的共轭复数具有解析性。解析函数通常被定义为由复数域上的函数,它满足要求的复变量导数总是...
z的共轭复数能不能展开成泰勒级数
不能。因为函数f(z)=z'在复平面上处处不解析。【注意:z'表示z的共轭】证明可以通过柯西-黎曼方程来完成。f(z)=u+iv=z'=x-iy,所以u=x,v=-y,所以四个偏导数为ux=1,uy=-1,所以不满足柯西-黎曼方程。所以f(z)不可导,从而不解析。因此在任何地方都不能展开成泰勒级数。
如何判断一个函数在复平面上是解析的?
而且函数的形式比较和谐,那么这个函数在复平面上处处不解析。如果要求函数f(z)在z0处是否解析,就要根据u和v的表达式,结合柯西-黎曼方程判断f(z)在z0附近(不包括z0)是否可导。如果可导,进一步通过定义法判断f(z)在z0点是否可导。若两次判断都满足可导条件,则f(z)在z0处解析。
复变函数cosz(z上面有一横,也就是cos(z的共轭复数)为什么处处不解析...
用柯西黎曼方程验证即可,令f(z)=z共轭=x-iy,所以u'x=1,v'y=-1,u'x≠v'y,不满足柯西黎曼方程,所以z共轭在复平面处处不解析,因此cosz共轭也处处不解析。
复变函数cosz(z上面有一横,也就是cos(z的共轭复数)为什么处处不解析...
用柯西黎曼方程验证即可,令f(z)=z共轭=x-iy,所以u'x=1,v'y=-1,u'x≠v'y,不满足柯西黎曼方程,所以z共轭在复平面处处不解析,因此cosz共轭也处处不解析。
对复变函数的认识和理解
1.复数与复平面 复变函数的基础是复数,复数由实部和虚部组成,形式为z=x+yi,其中x和y分别为实数,i是虚数单位。复平面将复数表示为在平面上的点,实轴和虚轴分别对应x轴和y轴,使得复数的运算具有几何意义。2.复变函数的定义和性质 复变函数是将复数域映射到复数域的函数,可以表示为w=f(z)...
证明函数f(z)=z的共轭在z平面上处处连续?
复变函数f(z)=u(x,y)+iv(x,y)连续的充要条件是两个二元实函数u(x,y),v(x,y)都连续,本题中f(z)=x-iy,这里u(x,y)=x,v(x,y)=-y在xoy平面上处处连续,所以f(z)在复平面上处处连续。