第1个回答 2018-06-09
1+2+....+n=n(n+1)/2;
1^2+2^2+....+n^2=n(n+1)(2n+1)/6;
1^3+2^3+....+n^3=[n(n+1)/2]^2;
1^4+2^4+...+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30
1^5+2^5+...+n^5=n^2(n+1)^2(2n^2+2n-1)/12
1^6+2^6+...+n^6=n(n+1)(2n+1)(3n^4+6n^3-3n+1)/42
1^7+2^7+...+n^7=n^2(n+1)^2(3n^4+6n^3-n^2-4n+2)/24
我只能帮你到这儿了。本回答被网友采纳