定积分,不定积分…微积分各是什么啊??有什么区别

如题所述

不定积分

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。
记作∫f(x)dx。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。
也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.

定积分

众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。
实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。
而相对于不定积分,就是定积分。
所谓定积分,其形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。
定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。
我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢?
定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:
若F'(x)=f(x)
那么∫f(x) dx (上限a下限b)=F(a)-F(b)
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:
Φ(x)= x(上限)∫a(下限)f(t)dt
牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。
正这个理论揭示了积分与黎曼积分本质的联系,可见其在微积分学乃至整个高等数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。

微积分

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
积分 integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作 。如果F(x)是f(x)的一个原函数,则 ,其中C为任意常数。例如, 定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b〕上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b〕分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b〕上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi〕的取法都无关的常数I,使得,其中则称I为f(x)在[a,b〕上的定积分,表为即 称[a,b〕为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。

参考资料:http://baike.baidu.com/view/61339.htm

温馨提示:内容为网友见解,仅供参考
无其他回答

定积分,不定积分…微积分各是什么啊??有什么区别
第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这...

什么叫积分,什么叫微积分,什么叫定积分,什么叫不定积分,有什么联系和...
2、定积分:定积分与不定积分的区别是,定积分有上下限,∫(a,b)f'(x)dx 而不定积分是没有上下限的,因而不定积分的结果往往是个函数,定积分的结果则是个常数,这点对解积分方程有一定的帮助。三、联系和区别 微积分包括微分和积分,积分包括不定积分和定积分。其中,不定积分没有积分上下限,...

定积分、不定积分、微分、微积分、导数各有什么不同(区别)?求大神帮助...
1. 微积分是由微分和积分两大概念组成的数学分支。2. 积分概念进一步细分为不定积分和定积分。3. 不定积分是指积分过程没有明确的上下限,其结果包含一个常数C,表示积分的不确定性。4. 定积分是在不定积分的基础上,加入了具体的积分上下限,其结果是一个具体的数值。5. 导数(dy\/dx)是微积分...

微分,微积分,定积分,不定积分有什么区别,要详细,谢谢。
微分,说白了就是求导,名字不同而已,不定积分是导数的逆运算告诉你导完以后的求原函数也就是没求导以前的、至于定积分是给不定积分划定了区间范围求法和不定积分相同带入上下线,而以上三个统称微积分,回答完毕。

数学里,微分和不定积分什么区别啊?好像两个的值都是原函数?求详解
微积分是数学中联系微分和积分两个过程的分支,它包括微分和积分的基本定理。微分是求函数瞬时变化率的过程,而定积分则可以看作是微分的逆运算,通过累加无数个小矩形的面积来求得函数图形与坐标轴之间区域的总面积。微积分的基本定理揭示了微分和积分之间的深刻关系,即导数和原函数之间的关系,这是微...

定积分、不定积分、微分、微积分、导数各有什么不同(区别)?求大神帮助...
微积分包括微分和积分 积分包括不定积分和定积分 其中 不定积分没有积分上下限 所得原函数后面加一个常数C 定积分是在不定积分的基础上 加上了积分上下限 所得的是数 dy\/dx 叫导数 将dx乘到等式右边 就是微分

微分,微积分,定积分,不定积分有什么区别,要详细,谢谢。
是一种近似,一种代替。而不定积分是定积分的逆运算,就好像减法是加法的逆运算,除法是乘法的逆运算一样。定积分是一种极限,是比较特殊的极限,为什么说它特殊呢?因为它的极限过程不同于以前学过的任意一种极限过程,它是要求最长区间趋于0求极限,而且极限结果与划分无关,说到底,就是极限。本质...

定积分与不定积分有哪些区别?
定积分和不定积分是微积分中的两个重要概念,它们之间有以下几个主要区别:1.定义上的区别:定积分是对一个函数在一定区间上的积分,其结果是一个确定的实数或实数范围内的数值。而不定积分是对一个函数的积分,其结果是一个函数(通常称为原函数),而不是一个确定的数值。2.计算方法上的区别:定...

定积分和不定积分的区别和联系
2、定积分和不定积分计算的运算内容不同:不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分。积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。3、定积分和不定积分...

定积分和微积分有什么区别?
定积分是指有固定的积分区间,它的积分值是确定的。不定积分没有固定的积分区间,它的积分值是不确定的。微积分的应用:(1)运动中速度与距离的互求问题 (2)求曲线的切线问题 (3)求长度、面积、体积、与重心问题等 (4)求最大值和最小值问题(二次函数,属于微积分的一类)定积分的应用:...

相似回答