已知定义在区间(0,正无穷)上的函数f(x)满足f(x1/x2)=f(x1)-f(x2),且当x大于1时,f(x)大于0
若f(4)=2,求f(x)在【5,16】上的最大值
请çæ¸ é¢ååç
请看清题再回答
已知定义在区间(0,正无穷)上的函数f(x)满足f(x1\/x2)=f(x1)-f(x2...
(1)f(1)=f(1)-f(1)=0。(2)f(x)在(0,正无穷)是减函数。设x2>x1,f(x2)-f(x1)=f(x2\/x1),由于x2\/x1大于1,而x>1时,f(x)<0,f(x2)-f(x1)小于0,所以f(x)是减函数。(3)最小值是-2。因为f(x)是减函数,所以当x=9时f(x)取得最小值。f(9\/3)=f(9)...
...上的函数f(x)满足f(X1\/x2)=f(x1)-f(x2),且当x>1时f(x)<0. (1...
令0<x1<x2,则x2\/x1>1 ∵当x>1时f(x)<0 既有f(x2)-f(x1)=f(X2\/x1)<0,即f(x2)<f(x1),故为减函数 f(log2x)>-2推f(log2x)-f(3)>f(3)=f(log2x\/3)>f(3)∵原式为减函数 ∴(log2x)\/3<3推出log2x<9,(楼主的log2x应该表示2为底,x的对数吧)...
...上的函数f(x)满足 f(x1\/x2)=f(x1)-f(x2) ,且当 x>1 时, f(x)<0...
在区间(0,正无穷大),当x1>x2时,x1\/x2>1 所以f(x1\/x2)=f(x1)-f(x2)<0,即f(x1)<f(x2)所以f(x)在定义域内为减函数。(2)因为f(3)=-1,f(1)=0 令x1=1,x2=3可得 f(1\/3)=f(1)-f(3)=1 令x1=3,x2=1\/3可得:f(9)=f(3)-f(1\/3)=-2 所以f(|x|)<...
...+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),且当x>1时,f(x)<0...
(1)∵定义在区间(0,+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),∴当x1=x2时,f(1)=O.(2)f(x)是减函数.证明:设x1>x2,则f(x1)-f(x2)=f(x1x2),∵x1>x2,∴x1x2>1,∵当x>1时,f(x)<0,∴f(x1)-f(x2)<0,∴f(x)在区间...
...+∞)上的函数f(x)满足f(x1\/x2)=f(x1)-f(x2),且当x>1时,f(x)<0...
解:(1)令x1=x2=1 则f(1)=f(1)-f(1)=0 ∴f(1)=0 (2)令x1>x2>0 则f(x1)-f(x2)=f(x1\/x2) ∵x1>x2>0 ∴x1\/x2>1 又∵当x>1时,f(x)<0 ∴f(x1\/x2)<0 即f(x1)-f(x2)<0 f(x1)<f(x2) ∴f(x...
...上的函数f(x)满足f(x1\/x2)=f(x1)-f(x2),且当x>1时f(x)<0
得f(1\/x)=f(1)-f(x)=-f(x)<0 所以当0<x<1时,f(x)>0 令x1>x2,得f(x1\/x2)=f(x1)-f(x2)<0,所以f(x)在(1,+∞)上为减函数 令x1<x2,得f(x1\/x2)=f(x1)-f(x2)>0,所以f(x)在(0,1)上为增函数 不是当x>1时f(x)<0吗?怎么f(3)=4>0?
...=f(x 1 )-f(x 2 ),且当x>1时,f(x)<0.(1)求f(1)
(1)0(2)函数f(x)在区间(0,+∞)上是减函数(3){x|x>9或x<-9} 解:(1)令x 1 =x 2 >0,代入得f(1)=f(x 1 )-f(x 1 )=0,故f(1)=0.(2)任取x 1 ,x 2 ∈(0,+∞),且x 1 >x 2 ,则 >1.由于当x>1时,f(x)<0,所以f( )<0,即f(x...
...+∞)上的函数f(x)满足f(x1\/x2)=f(x1)-f(x2),且当x>1
3﹚=1 令X1=3,X2=1\/3,∴F﹙9﹚=-1-1=-2 不等式即为F﹙X�0�5-3X-1﹚<F﹙9﹚,又∵F﹙X﹚在﹙0,+∞﹚单调递减,∴所解不等式化为X�0�5-3X-1>9﹙此时X�0�5-3X-1显然>0﹚ 解得-2<X<5 ...
...0,+∞)上的函数f(x)满足f[(x1)\/(x2)]=f(x1)-f(x2),且当x>1时,f...
设x1>x2>0,则x1\/x2>1,所以f(x1\/x2)<0,即f[(x1)\/(x2)]=f(x1)-f(x2)<0,从而证得f(x)在(0,+∞)上单调递减,所以f(x)在[2,9]上的最小值就是f(9).因为f(3)=f(9\/3)=f(9)-f(3),所以f(9)=2f(3)=-2,即f(x)在[2,9]上的最小值是-2....
...+∞)上的函数f(x)满足f(x1\/x2)=f(x1)-f(x2),且当x>1时,f(x)>0...
f(3x+6)>f(9)-f(1\/x)=f[9\/(1\/x)]=f(9x)由1知f(x)是增函数→3x+6>9x→x<1→不等式的解x∈(0,1)x∈(0,3]时,f(x)≤1→m²-2am+1≥1→m²-2am≥0 m(m-2a)≥0 m>0时 m-2a≥0恒成立→m≥2 m=0时 恒成立 m<0时 m-2a≤0恒成立→m≤-2 实数m...