勾股定理的证明方法,要有图片,至少10种。

如题所述

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是

a^2+b^2=c^2。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法:直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA’ ≌△AA'C 。

过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等;

⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)2

= (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED

= ab+ ba+ c2

= (2ab+c2)。 ②

比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ? BA, ①

由△CAD∽△BAC可得AC2=AD ? AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

证法1】(课本的证明)

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即

, 整理得 .

【证法2】(邹元治证明)

以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.

∵ RtΔHAE ≌ RtΔEBF,

∴ ∠AHE = ∠BEF.

∵ ∠AEH + ∠AHE = 90º,

∴ ∠AEH + ∠BEF = 90º.

∴ ∠HEF = 180º―90º= 90º.

∴ 四边形EFGH是一个边长为c的

正方形. 它的面积等于c2.

∵ RtΔGDH ≌ RtΔHAE,

∴ ∠HGD = ∠EHA.

∵ ∠HGD + ∠GHD = 90º,

∴ ∠EHA + ∠GHD = 90º.

又∵ ∠GHE = 90º,

∴ ∠DHA = 90º+ 90º= 180º.

∴ ABCD是一个边长为a + b的正方形,它的面积等于 .

∴ . ∴ .

【证法3】(赵爽证明)

以a、b 为直角边(b>a), 以c为斜

边作四个全等的直角三角形,则每个直角

三角形的面积等于 . 把这四个直角三

角形拼成如图所示形状.

∵ RtΔDAH ≌ RtΔABE,

∴ ∠HDA = ∠EAB.

∵ ∠HAD + ∠HAD = 90º,

∴ ∠EAB + ∠HAD = 90º,

∴ ABCD是一个边长为c的正方形,它的面积等于c2.

∵ EF = FG =GH =HE = b―a ,

∠HEF = 90º.

∴ EFGH是一个边长为b―a的正方形,它的面积等于 .

∴ .

∴ .

【证法4】(1876年美国总统Garfield证明)

以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.

∵ RtΔEAD ≌ RtΔCBE,

∴ ∠ADE = ∠BEC.

∵ ∠AED + ∠ADE = 90º,

∴ ∠AED + ∠BEC = 90º.

∴ ∠DEC = 180º―90º= 90º.

∴ ΔDEC是一个等腰直角三角形,

它的面积等于 .

又∵ ∠DAE = 90º, ∠EBC = 90º,

∴ AD‖BC.

∴ ABCD是一个直角梯形,它的面积等于 .

∴ .

∴ .

【证法5】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.

∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90°,

∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180º―90º= 90º.

又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形.

∴ ∠ABC + ∠CBE = 90º.

∵ RtΔABC ≌ RtΔEBD,

∴ ∠ABC = ∠EBD.

∴ ∠EBD + ∠CBE = 90º.

即 ∠CBD= 90º.

又∵ ∠BDE = 90º,∠BCP = 90º,

BC = BD = a.

∴ BDPC是一个边长为a的正方形.

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

,

∴ .

【证法6】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP‖BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵ ∠BCA = 90º,QP‖BC,

∴ ∠MPC = 90º,

∵ BM⊥PQ,

∴ ∠BMP = 90º,

∴ BCPM是一个矩形,即∠MBC = 90º.

∵ ∠QBM + ∠MBA = ∠QBA = 90º,

∠ABC + ∠MBA = ∠MBC = 90º,

∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,

∴ RtΔBMQ ≌ RtΔBCA.

同理可证RtΔQNF ≌ RtΔAEF.

从而将问题转化为【证法4】(梅文鼎证明).

【证法7】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD. 过C作CL⊥DE,

交AB于点M,交DE于点

L.

∵ AF = AC,AB = AD,

∠FAB = ∠GAD,

∴ ΔFAB ≌ ΔGAD,

∵ ΔFAB的面积等于 ,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴ 矩形ADLM的面积 = .

同理可证,矩形MLEB的面积 = .

∵ 正方形ADEB的面积

= 矩形ADLM的面积 + 矩形MLEB的面积

∴ ,即 .

【证法8】(利用相似三角形性质证明)

如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.

在ΔADC和ΔACB中,

∵ ∠ADC = ∠ACB = 90º,

∠CAD = ∠BAC,

∴ ΔADC ∽ ΔACB.

AD∶AC = AC ∶AB,

即 .

同理可证,ΔCDB ∽ ΔACB,从而有 .

∴ ,即 .

【证法9】(杨作玫证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.

∵ ∠BAD = 90º,∠PAC = 90º,

∴ ∠DAH = ∠BAC.

又∵ ∠DHA = 90º,∠BCA = 90º,

AD = AB = c,

∴ RtΔDHA ≌ RtΔBCA.

∴ DH = BC = a,AH = AC = b.

由作法可知, PBCA 是一个矩形,

所以 RtΔAPB ≌ RtΔBCA. 即PB =

CA = b,AP= a,从而PH = b―a.

∵ RtΔDGT ≌ RtΔBCA ,

RtΔDHA ≌ RtΔBCA.

∴ RtΔDGT ≌ RtΔDHA .

∴ DH = DG = a,∠GDT = ∠HDA .

又∵ ∠DGT = 90º,∠DHF = 90º,

∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,

∴ DGFH是一个边长为a的正方形.

∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .

∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).

用数字表示面积的编号(如图),则以c为边长的正方形的面积为



∵ = ,



∴ = . ②

把②代入①,得

= = .

∴ .

【证法10】(李锐证明)

设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).

∵ ∠ TBE = ∠ABH = 90º,

∴ ∠TBH = ∠ABE.

又∵ ∠BTH = ∠BEA = 90º,

BT = BE = b,

∴ RtΔHBT ≌ RtΔABE.

∴ HT = AE = a.

∴ GH = GT―HT = b―a.

又∵ ∠GHF + ∠BHT = 90º,

∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,

∴ ∠GHF = ∠DBC.

∵ DB = EB―ED = b―a,

∠HGF = ∠BDC = 90º,

∴ RtΔHGF ≌ RtΔBDC. 即 .

过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE

= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌

RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 .

由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.

∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,

∴ ∠FQM = ∠CAR.

又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,

∴ RtΔQMF ≌ RtΔARC.

【证法11】(利用切割线定理证明)

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得

=
=
= ,

即 ,

∴ .

【证法12】(利用多列米定理证明)

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有



∵ AB = DC = c,AD = BC = a,

AC = BD = b,

∴ ,即 ,

∴ .

【证法13】(作直角三角形的内切圆证明)

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.

∵ AE = AF,BF = BD,CD = CE,


= = r + r = 2r,

即 ,

∴ .

∴ ,

即 ,

∵ ,

∴ ,

又∵ = =
= = ,

∴ ,

∴ ,

∴ , ∴ .

【证法14】(利用反证法证明)

如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.

假设 ,即假设 ,则由

= =
可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.

在ΔADC和ΔACB中,

∵ ∠A = ∠A,

∴ 若 AD:AC≠AC:AB,则

∠ADC≠∠ACB.

在ΔCDB和ΔACB中,

∵ ∠B = ∠B,

∴ 若BD:BC≠BC:AB,则

∠CDB≠∠ACB.

又∵ ∠ACB = 90º,

∴ ∠ADC≠90º,∠CDB≠90º.

这与作法CD⊥AB矛盾. 所以, 的假设不能成立.

【证法15】(辛卜松证明)

设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 = .

【证法16】(陈杰证明)

设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).

在EH = b上截取ED = a,连结DA、DC,

则 AD = c.

∵ EM = EH + HM = b + a , ED = a,

∴ DM = EM―ED = ―a = b.

又∵ ∠CMD = 90º,CM = a,

∠AED = 90º, AE = b,

∴ RtΔAED ≌ RtΔDMC.

∴ ∠EAD = ∠MDC,DC = AD = c.

∵ ∠ADE + ∠ADC+ ∠MDC =180º,

∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,

∴ ∠ADC = 90º.

∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形.

∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,

∴ ∠BAF=∠DAE.

连结FB,在ΔABF和ΔADE中,

∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,

∴ ΔABF ≌ ΔADE.

∴ ∠AFB = ∠AED = 90º,BF = DE = a.

∴ 点B、F、G、H在一条直线上.

在RtΔABF和RtΔBCG中,

∵ AB = BC = c,BF = CG = a,

∴ RtΔABF ≌ RtΔBCG.

图可以根据题目画出来喔~
温馨提示:内容为网友见解,仅供参考

勾股定理的证明方法,要有图片,至少10种。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令...

勾股定理10种证明方法附图
哈格森是瑞士数学家,他通过构造一系列等腰直角三角形来证明勾股定理。牛顿证明法 牛顿是英国数学家和物理学家,他通过微积分的方法证明了勾股定理。皮克特证明法 皮克特是美国数学家,他利用了三角形的边长和角度之间的关系来证明勾股定理。总结:以上10种证明方法分别从不同的角度和思路出发,证明了勾股定理...

帮我找到勾股定理的验证方法(至少10种)
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令...

勾股定理的证明方法(10种以上)
【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 .【证法2】(邹元治证明)以a、b 为直角边,以...

勾股定理验证方法及对应图形
1、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,烂扰派也有人称商高定李哗理。2、勾股定理现约有500种证明方法,是数学定理中证明方法最多的...

勾股定理的证明方法10种
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得...

勾股定理的十种解法(一定要有图) 友友们啊、一定要有图啊、拜托啦...
利用相似三角形证明 有许多勾股定理的证明方式,都是基于相似三角形中两边长的比例.设ABC为一直角三角形, 直角于角C(看附图). 从点C画上三角形的高,并将此高与AB的交叉点称之为H.此新三角形ACH和原本的三角形ABC相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角...

证明勾股定理的几种方法,最好有图象解释
勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与...

勾股定理简单证明方法配图
证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C三点共线,C、G、D三点共线。∵Rt△HAE≌Rt△EBF ∴∠AHE=∠BEF ∵∠AHE+∠AEH=90° ∴∠BEF+∠AEH=90° ∵A、E、B共线 ∴∠HEF=90°,四边形EFGH为正方形 ...

勾股定理16种证明方法
勾股定理16种证明方法 勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方,即在以a、b为直角边,c为斜边的三角形中有a^2+b^2=c^2。 方法 1\/16 证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线...

相似回答