函数连续一定连续可导吗?

如题所述

结论:

1、连续不一定可导,比如y=|x| 在x=0处是连续的但不可导。

2、其左导数=-1,但右导数=1,只有左右导数同时存在且相等时才可导。

3、函数在某点连续其极限一定存在,即左,右极限存在并相等且等于该点函数值。

4、连续一定可微,即dx始终是存在的。

连续函数的性质:

1、有界性

所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。

证明:利用致密性定理:有界的数列必有收敛子数列。

2、最值性

所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。

3、介值性

这个性质又被称作介值定理,其包含了两种特殊情况:

(1)零点定理。也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,使f(ξ)=0。

(2)闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。

4、一致连续性

闭区间上的连续函数在该区间上一致连续。

所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。

温馨提示:内容为网友见解,仅供参考
无其他回答

连续一定可导?还是可导一定连续?
连续与可导的关系是:可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。函数可导的充要条件 函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)...

连续函数可导一定连续吗?
可导一定连续,连续不一定可导 证明:可导一定连续 设y=f(x)在x0处可导,f'(x0)=A 由可导的充分必要条件有 f(x)=f(x0)+A(x-x0)+o(│x-x0│)当x→x0时,f(x)=f(x0)+o(│x-x0│)再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得...

函数连续一定连续可导吗?
1、连续不一定可导,比如y=|x| 在x=0处是连续的但不可导。2、其左导数=-1,但右导数=1,只有左右导数同时存在且相等时才可导。3、函数在某点连续其极限一定存在,即左,右极限存在并相等且等于该点函数值。4、连续一定可微,即dx始终是存在的。连续函数的性质:1、有界性 所谓有界是指,存在一...

函数可导性与连续性的关系
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。我们称函数到处连续或处处连续,或者简单的称为连续,如果它在其定义域中的任意一点处都连续。更一般地,当一个函数在定义域中的某个子集的每一点处都连续时,就说这个函数在这个子集上是连续的。

什么是“连续可导必连续,可导不一定连续”
理解:“可导必连续”:可以导的函数的话,如果确定一点那么就知道之后一点的走向,不会有突变。“连续不一定可导”:连续不可导的话,像尖的顶点,那一个点是不可导的。

可导与连续的关系
可导与连续的关系是可导一定连续,连续不一定可导。也就是说,如果一个函数在某点可导,那么这个函数在该点一定连续;但是如果一个函数在某点连续,那么这个函数在该点不一定可导。这是因为连续是函数的取值,可导是函数的变化率。可导是更高一个层次。具体来说,存在处处连续但处处不可导的函数。左导数...

函数连续,可导,一定连续吗,导数存在吗?
函数连续并且可导并不意味着一定连续,导数存在。连续性和可导性是两个不同的性质。一个函数在某个点处连续意味着在该点处左右极限存在且相等,而可导性则要求在该点处的导数存在。函数可导性是连续性的一个更强的条件,因为可导性要求函数在某个点处的左右导数存在且相等。举个例子,考虑函数f(x) ...

连续是可导的什么条件?
连续是可导的必要不充分条件。连续的函数不一定可导,可导的函数一定连续。函数在一点可导,推不出在点的领域内可导,例如f(x)=x^2, x是有理数;f(x)=0, x是无理数.可以验证在x=0点可导,但是x=0的领域都有不可导点。同理某点连续也推不出在领域内连续,但是能推出在某个小领域内有...

函数连续但可导,可导必连续吗?
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

函数连续是不是可导的必要条件啊?
不一定。虽然函数的连续性是函数可导的一个常见的必要条件,但它并不是充分条件。一个函数在某点处可导,意味着它在那一点存在导数,也就是它在那一点附近有一个明确定义的变化率。连续性是导数存在的一个必要条件,但不足以保证导数的存在。举一个简单的例子,考虑函数:[ f(x) = |x| ]在 (x...

相似回答
大家正在搜