两个向量相乘公式是什么

如题所述

向量的乘法分为数量积和向量积两种。

对于向量的数量积,计算公式为:

A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。

对于向量的向量积,计算公式为:

A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为

扩展资料

两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x'+y·y'。

两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|

参考资料百度百科-向量

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-09-10

两个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。         

       

向量的乘积公式

向量a=(x1,y1),向量b=(x2,y2)

a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)

PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b

向量积公式

向量积|c|=|a×b|=|a||b|sin<a,b>

向量相乘分内积和外积

内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)

外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。

另外 外积可以表示以a、b为边的平行四边形的面积

=两向量的模的乘积×cos夹角

=横坐标乘积+纵坐标乘积        

扩展资料

向量的定义:是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。

两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x'+y·y'。

两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

第2个回答  2021-06-10

向量相乘公式:

       向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。

向量积公式:

设向量a=(x1,y1),向量b=(x2,y2),a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)。

向量之间不叫乘积,而叫数量积,如a·b叫做a与b的数量积或a点乘b。

向量积|c|=|a×b|=|a||b|sin。

向量相乘分内积和外积:

内积:ab=丨a丨丨b丨cosα,内积无方向,叫点乘。

外积:a*b=丨a丨丨b丨sinα,外积有方向,叫*乘。那个读差,即差乘,方便表达所以用差。

另外,外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积*cos夹角=横坐标乘积+纵坐标乘积。

向量的定义:

      是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。

第3个回答  2023-07-25
在线性代数中,有两种常见的向量相乘运算:点积(内积)和叉积(外积)。

1.点积(内积): 对于两个n维实向量a和b,它们的点积可以表示为: a · b = a1 * b1 + a2 * b2 + … + an * bn 其中,ai和bi表示向量a和b的第i个分量。

2.叉积(外积): 对于三维向量a和b,它们的叉积可以表示为: a × b = (a2 * b3 - a3 * b2) i + (a3 * b1 - a1 * b3) j + (a1 * b2 - a2 * b1) k 其中,i、j和k分别表示xyz坐标轴的单位向量。

这两种向量相乘的公式在线性代数中非常重要,它们在计算向量之间的夹角、投影、面积、体积等问题中都有广泛的应用。
第4个回答  2023-07-15
在线性代数中,两个向量相乘有几种不同的定义,其中最常见的为点积(内积)和叉积(外积)。
1. 点积(内积):
- 定义:对于两个n维向量a和b,它们的点积(内积)被定义为两个向量对应元素的乘积之和。点积通常用符号 "·" 表示。
- 公式:a · b = a₁b₁ + a₂b₂ + ... + aₙbₙ
- 示例:假设有两个向量 a = [2, 3] 和 b = [4, -1],它们的点积计算如下:
a · b = 2·4 + 3·(-1) = 8 - 3 = 5
2. 叉积(外积):
- 定义:对于三维向量,叉积(外积)可以用来计算两个向量所张成平面的法向量,其结果是一个新的向量。叉积通常用符号 "×" 表示。
- 公式:a × b = [a₂b₃ - a₃b₂, a₃b₁ - a₁b₃, a₁b₂ - a₂b₁]
- 示例:假设有两个向量 a = [2, 3, 1] 和 b = [4, -1, 5],它们的叉积计算如下:
a × b = [3×5 - 1×1, 1×4 - 2×5, 2×(-1) - 3×4] = [14, -6, -11]
这些向量相乘的公式可以应用于各种数学和物理问题中,例如计算两个向量的夹角、平面的法向量以及向量的投影等。根据具体情况,选择适当的向量相乘操作可以得到所需的结果。

向量相乘公式?
向量积公式 向量积|c|=|a×b|=|a||b|sin 向量相乘分内积和外积 内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。另外 外积可以表示以a、b为边的平行四边形的面积 =两向量的模的乘积×cos夹角 =...

向量乘以向量等于什么?
1、向量a 乘以 向量b = (向量a得模长) 乘以 (向量b的模长) 乘以 cosα [α为2个向量的夹角]2、向量a(x1,y1) 向量b(x2,y2)3、向量a 乘以 向量b =(x1*x2,y1*y2)注意:所有的乘法运算均为点乘。

两个向量相乘
两个向量相乘有两种形式:叉积和点积。(1)向量叉积=向量的模乘以向量夹角的正弦值;向量叉积的方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过...

向量相乘公式?(向量相乘公式推导)
向量相乘公式的两个公式为:ab=丨a丨丨b丨cosα(点乘法)a×b=丨a丨丨b丨sinα(×乘法)

向量a 乘以向量b的公式
向量A乘以向量B 的结果有以下三种:1、向量a 乘以 向量b = (向量a得模长) 乘以 (向量b的模长) 乘以 cosα [α为2个向量的夹角]2、向量a(x1,y1) 向量b(x2,y2)3、向量a 乘以 向量b =(x1*x2,y1*y2)注意:所有的乘法运算均为点乘。

俩向量相乘的公式是?
向量相乘分为点乘和叉乘 点乘的结果是一代数,而叉乘的结果是一向量.点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||b|cos 在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。叉乘,也叫向量的外积、向量积。顾名思义,求下来...

向量相乘的公式
向量相乘有两种方式,即内积(数量积)和外积(叉积)。对于内积,计算公式如下:1、对于二维向量:A=(x1,y1),B=(x2,y2),A与B的内积(数量积)为:x1x2+y1y2。对于三维向量:A=(x1,y1,z1),B=(x2,y2,z2),A与B的内积(数量积)为:x1x2+y1y2+z1*z2。内积的...

向量的乘法是什么?
向量的乘法是:a*b=|a|*|b|*sinθ,sin是a,b的夹角,取值[0,π]。向量积|c|=|a×b|=|a||b|sin。点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积,是标量。向量的乘积公式 向量a=(x1,y1),向量b=(x2,y2)。a·b=x1x2+y1y2=|a||b|cosθ(...

向量相乘的公式是什么
向量相乘分内积和外积 内积 ab=丨a丨丨b丨cosα (内积无方向 叫点乘)外积 a×b=丨a丨丨b丨sinα (外积有方向 叫×乘)那个读差 即差乘 方便表达所以用差,别理解错误 另外 外积可以表示以a、b为边的平行四边形的面积 ...

向量乘向量的公式
向量相乘公式如下:,(0°≤θ≤180°)向量积(向量相乘),数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。

相似回答