如何理解可导必连续,连续未必可导?

如题所述

理解:

“可导必连续”:可以导的函数的话,如果确定一点那么就知道之后一点的走向,不会有突变。

“连续不一定可导”:连续不可导的话,像尖的顶点,那一个点是不可导的。

扩展资料:

在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中,至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集。

在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的角度出发去考虑,这个猜想是正确的。

但是随着级数理论的发展,函数表示的手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。

我们知道,经典几何学研究的对象是规则而光滑的几何图形,但是自然界存在着许多不规则不光滑的几何图形,它们都具有上面所述的“自相似性”。如云彩的边界;山峰的轮廓;

奇形怪状的海岸线;蜿蜒曲折的河流;材料的无规则裂缝,等等。这些变化无穷的曲线,虽然处处连续,但可能处处不可导。

因此“分形几何”自产生起,就得到了数学家们普遍的关注,很快就发展为一门有着广泛应用前景的新的学科。

温馨提示:内容为网友见解,仅供参考
无其他回答

如何理解可导必连续,连续未必可导?
理解:“可导必连续”:可以导的函数的话,如果确定一点那么就知道之后一点的走向,不会有突变。“连续不一定可导”:连续不可导的话,像尖的顶点,那一个点是不可导的。

可导一定是连续的吗?为什么?
可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。可导必连续证明如下图 连续不一定可导。函数可导,导函数不一定连续。如y=³√x是在R上连续的,导函数为y'=1\/(...

可导一定连续,连续不一定可导,这句话对吗,为什么?
对的。“可导必连续”,可以导的函数的话,如果确定一点那么就知道之后一点的走向,不会有突变;“连续不一定可导”,连续不可导的话,像尖的顶点,那一个点是不可导的。可导一定连续,逆否命题同样为真,不连续一定不可导,连续不一定可导。例如绝对值函数就是连续的,但不可导,可导数一定连续是因为...

什么叫“可导就连续,不可导就不连续”呢?
可导必连续,意思是一个函数可导,则导函数存在,不能说明导函数的极限存在,也不能说明导函数连续。导函数简介:如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点...

可导和连续的关系是什么?
可导与连续的关系是可导一定连续,连续不一定可导。也就是说,如果一个函数在某点可导,那么这个函数在该点一定连续;但是如果一个函数在某点连续,那么这个函数在该点不一定可导。这是因为连续是函数的取值,可导是函数的变化率。可导是更高一个层次。具体来说,存在处处连续但处处不可导的函数。左导数...

连续不一定可导,可导一定连续么?
在原函数可导的假设下,它连续是先决条件,连续不一定可导,而可导的函数必须是连续函数。原函数既然可导,那原函数就必须连续,这是可导的必要条件。相关如下:任何一个可积函数一定是有界的,但是需要注意的是,有界函数不一定可积。可以统一处理函数有界与无界的情形,函数也可以定义在更一般的点集上,...

连续不一定可导,那么可导一定连续吗?
可导一定连续。连续不一定可导,但是可导一定连续,因为可以导的函数的话,如果确定一点那么就知道之后一点的走向,不会有突变。连续与可导的关系为:连续的函数不一定可导;可导的函数是连续的函数,越是高阶可导函数曲线越是光滑,存在处处连续但处处不可导的函数。连续与可导的关系:1、连续的函数不一定...

可导必连续,连续不一定可导对吗?
一元函数范围内。可导必连续,连续不一定可导。已经说了去心邻域,就说明已经有了间断点。有间断点就是不连续。函数可导的充要条件:左导数和右导数都存在并且相等。函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。

可导一定连续,连续一定可导吗?
可导一定连续,连续不一定可导。证明:设y=f(x)在x0处可导,f'(x0)=A。由可导的充分必要条件有:f(x)=f(x0)+A(x-x0)+o(│x-x0│)。当x→x0时,f(x)=f(x0)+o(│x-x0│)。再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得,...

函数连续但可导,可导必连续吗?
对于一元函数来说,可导必连续,但连续未必可导。一阶导数连续,但一阶导数未必可导,因此未必存在二阶导数。要存在二阶导数,当然是要求一阶导数可导。可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。...

相似回答
大家正在搜