若a于b+c互为相反数,试求:a(1\/b+1\/c)+b(1\/c+1\/a)+c(1\/a+1\/b)的值
a+b+c=0 合并下 (a\/b + c\/b) +(a\/c + b\/c) +(b\/a +c\/a)=(-1) + (-1) +( -1)=-3
已知a+b+c=0,求a(1\/b+1\/c)+b(1\/c+1\/a)+c(1\/a+1\/b)的值
a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b)=(a\/b+c\/b)+(a\/c+b\/c)+(b\/a+c\/a)=(a+c)\/b+(a+b)\/c+(b+c)\/a=(-b)\/b+(-c)\/c+(-a)\/a=-1-1-1=-3.
数学题。题目:已知a+b+c=0,求a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b)的值
, a+c=-b , b+c=-a , 所以 a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b) =a\/b+a\/c+b\/a+b\/c+c\/a+c\/b =(b+c)\/a+(a+b)\/c+(a+c)\/b =(-a\/a)+(-b\/b)+(-c\/c) =-1-1-1 =-3 . 所以a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b)的值为 -3 .
已知a+b+c=0,求a(1\/a+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/c)的值
a(1\/a+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/c)=(a+b+c)(1\/a+1\/c) 用乘法分配律 =0*(1\/a+1\/c) 0乘任何数都等于0 =0
已知a+b+c等于0,求a(1\/b+1\/c)+b(1\/c+1\/a)+c(1\/a+1\/b)的值
a^2+b^2=c^2=2ab a(1\/b+1\/c)+b(1\/c+1\/a)+c(1\/a+1\/b)=a(b+c\/bc)+b(a+c\/ac)+c(a+b\/ab)=a(-a\/bc)+b(-b\/ac)+c(-c\/ab)=-(a^2\/bc+b^2\/ac+c^2\/ab)=-(a^3+b^3+c^3\/abc)=-((a+b)(a^2-ab+b^2)+c^3)\/abc =-((-c)(c^2-2ab-ab)...
若a+b+c=0,则a*(1\/b+1\/c)+b*(1\/c+1\/a)+c*(1\/a+1\/b)的值是(?)
a+b+c=0 所以a+b=-c a+c=-b b+c=-a 所以a*(1\/b+1\/c)+b*(1\/c+1\/a)+c*(1\/a+1\/b)=a\/b+a\/c+b\/c+b\/a+c\/a+c\/b =(b+c)\/a+(a+c)\/b+(a+b)\/c =(-a)\/a+(-b)\/b+(-c)\/c =-1-1-1 =-3
求证对于任意正实数a,b,c有a(1\/b+1\/c)+b(1\/c+1\/a))+c(1\/a+1\/b)大于...
对于任意正实数a,b,c a(1\/b+1\/c)+b(1\/c+1\/a))+c(1\/a+1\/b)=(a\/b +b\/a)+(a\/c +c\/a)+(b\/c +c\/b)>=2+2+2=6 所以,对于任意正实数a,b,c有a(1\/b+1\/c)+b(1\/c+1\/a))+c(1\/a+1\/b)大于等于6 题目写错了,是6不是b ...
...+c^2=1,a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b)=-3,求a+b+c的值_百度知...
a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b)=-3 a(1\/b+1\/c)+b(1\/a+1\/c)+c(1\/a+1\/b)+a*1\/a+b*1\/b+c*1\/c=0 a(1\/a+1\/b+1\/c)+b(1\/b+1\/a+1\/c)+c(1\/c+1\/a+1\/b)=0 (a+b+c)(1\/a+1\/b+1\/c)=0 将1置换成a^2+b^2+c^2得:(a+b+c)*(a...
...a+b+c等于0,求a(1\/b+1\/c)+b(1\/c+1\/a)+c(1\/a+1\/b)值。(请写出原理和...
a(1\/b+1\/c)+b(1\/c+1\/a)+c(1\/a+1\/b) =a\/b+a\/c+b\/c+b\/a+c\/a+c\/b (将括号外的乘入展开) =(a+c)\/b+(a+b)\/c+(b+c)\/a (将上一步中分母相同的项相加) =(a+c)\/b+1+(a+b)\/c+1+(b+c)\/a+1-3 (每一分式后加1,最后减3,等式成立,为下一步做准备) =...
a+b+c=1求证:a\/(b+c)+b\/(c+a)+c\/(a+b)>=3\/2
左边=3-[1\/(b+c)+1\/(a+c)+1\/(a+b)]>=3-[9\/(a+b+b+c+c+a)=3\/2=右边 因为(1\/x+1\/y+1\/z)\/3>=3\/(x+y+z)这是算术平均值大于等于调和平均值,也可以用柯西不等式导出.