初中生在学习数学的过程中应该注意知识点的总结,下面总结了初中数学必考知识点,供大家参考。
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
③有理数的绝对值都是非负数。
(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零。
即|a|={a(a>0)0(a=0)﹣a(a<0)
(一)分式的运算
分式四则运算,顺序乘除加减,
乘除同级运算,除法符号须变(乘),
乘法进行化简,因式分解在先,
分子分母相约,然后再行运算,
加减分母需同,分母化积关键,
找出最简公分母,通分不是很难,
变号必须两处,结果要求最简。
(二)分式的运算法则
(1)约分
①如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
②分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
(2)公因式的提取方法
系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
(3)除法
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
(4)乘方
分子乘方做分子,分母乘方做分母,可以约分的约分,最后化成最简。
1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
3.原点的坐标是(0,0);
纵坐标相同的点的连线平行于x轴;
横坐标相同的点的连线平行于y轴;
x轴上的点的纵坐标为0,表示为(x,0);
y轴上的点的横坐标为0,表示为(0,y)。
4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
5.几个象限内点的特点:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)关于原点对称的点是(—x,—y);
(x,y)关于x轴对称的点是(x,—y);
(x,y)关于y轴对称的点是(—x,y)。
7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;
点P(x,y)到y轴的距离是︱x︳。
8.在第一、三象限角平分线上的点的坐标是(m,m);
在第二、四象限叫平分线上的点的坐标是(m,—m)。
(一)经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
(二)全等三角形的性质
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.能够完全重合的顶点叫对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
(三)全等三角形的判定
(1)SSS(边边边)
三边对应相等的三角形是全等三角形。
(2)SAS(边角边)
两边及其夹角对应相等的三角形是全等三角形。
(3)ASA(角边角)
两角及其夹边对应相等的三角形全等。
(4)AAS(角角边)
两角及其一角的对边对应相等的三角形全等。
(5)RHS(直角、斜边、边)
在一对直角三角形中,斜边及另一条直角边相等。
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式。
2.不等式的基本性质:
a不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
b不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
c不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).
5.用不等式表示,利用数轴或口诀解不等式组(口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。
1.平行线的性质
性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 平行线的判定:
判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。
2.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。 同位角、内错角、同旁内角:
3.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。 命题:判断一件事情的语句叫命题。
4.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
1.代数式:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
2.代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。
必考题型简单总结以下三种:
①已知条件不化简,所给代数式化简;
②已知条件化简,所给代数式不化简;
③已知条件和所给代数式都要化简。
初中数学知识点总结 初中数学基础知识大全
知识点1:一元二次方程的基本概念 1、一元二次方程3x2+5x-2=0的常数项是-2。2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。知识点2:直角坐标系与点的...
初中数学基础知识大全初中数学基础知识介绍
1、知识点:一元二次方程的基本概念 一元二次方程3x2+5x-2=0的常数项是-2。一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.2、知识点:直角坐标系与点的位置 直角坐...
初中数学知识有哪些?简单概括
知识点1:一元二次方程的基本概念 知识点2:直角坐标系与点的位置 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质 1.函数y=-8x是一次函数.2.函数y=4x+1是正比例函数.4.抛物线y=...
初中数学中考复习知识点
初中数学中考复习知识点覆盖了初中数学的各个主要领域,包括代数、几何、统计和概率。以下是一些中考复习时需要重点关注的知识点:1. 代数:- 实数的概念和运算(包括根号下的运算、无理数等)- 方程和不等式的解法和应用(包括一元一次方程、一元二次方程、不等式的解集等)- 函数的概念和性质(包括...
初中数学有几个知识点
问题一:初中数学有多少知识点 初中数学知识点总结 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数\/0\/负整数②分数→正分数\/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何...
初中数学全部知识点归纳总结(收藏)
初中数学是学习数学的重要阶段,涵盖的知识点繁多且重要。以下是对初中数学全部知识点的归纳总结,旨在帮助大家更好地理解和掌握。1. 数与代数:- 实数概念与运算:理解有理数、无理数、实数的概念,掌握加、减、乘、除运算的规则。- 分数与小数:熟练进行分数和小数的四则运算,包括约分、通分、互化...
初中数学一次函数必看知识点
因此,作一次函数的图像只需知道两个点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2. 性质:(1)在一次函数上的任意一点P(x,y),都满足等式y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b\/k,0)。正比例函数的图像总是通过原点。四、确定一次函数...
初中必背数学公式和知识点
以下是一些必背的数学公式和知识点,帮助你在学习数学时更加方便和高效:1. 平面几何公式:- 面积公式:矩形面积(长×宽)、三角形面积(底×高÷2)- 周长公式:正方形周长(4×边长)、长方形周长(2×长+2×宽)- 圆的面积公式:π × 半径²2. 代数学公式:- 一元二次方程求解公式...
初中数学知识点有哪些
01、初中数学知识点:一元二次方程的基本概念。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a0)。直角坐标系与点的位置,特殊三角函数值,圆的基本性质,直线与圆的位置关系等等。一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。
【初中数学】湘教版初二八年级上册数学课本知识点总结
6. 几何图形:复习三角形、四边形、圆等几何图形的性质、定理,学习证明和计算。7. 数学证明:掌握几何证明的基本方法和步骤,培养逻辑推理能力。8. 数据分析:学习收集、整理和分析数据的基本方法,理解概率和统计的基本概念。以上是【初中数学】湘教版初二八年级上册数学课本的主要知识点。通过本学期的...