1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
第4行, 减去第1行×4
1 2 3 4
2 3 4 1
3 4 1 2
0 -7 -10 -13
第3行, 减去第1行×3
1 2 3 4
2 3 4 1
0 -2 -8 -10
0 -7 -10 -13
第2行, 减去第1行×2
1 2 3 4
0 -1 -2 -7
0 -2 -8 -10
0 -7 -10 -13
第4行, 减去第2行×7
1 2 3 4
0 -1 -2 -7
0 -2 -8 -10
0 0 4 36
第3行, 减去第2行×2
1 2 3 4
0 -1 -2 -7
0 0 -4 4
0 0 4 36
第4行, 减去第3行×-1
1 2 3 4
0 -1 -2 -7
0 0 -4 4
0 0 0 40
主对角线相乘160
计算行列式,求详细解答。
∑M4j=M41+M42+M43+M44=-56+0+42-14=-28
行列式求详细解答
计算过程如下图所示,先用行列式的性质建立递推关系式,再由此间接求出原行列式的值。
求解行列式
第一题,详细解答见下图 意思是先把第二列、第三列、...一直到第n列都加到第一列上,这样第一列的值都一样,好化简;然后拿第二行减去第一行、第三行减去第一行、...一直到第n行减去第一行,这样下三角部分就全部消成0了。这样结果就是上三角行列式,对角线元素一乘就是答案。PS:你写的...
线性代数计算行列式,求详细过程
(1)按第一行展开,降为3阶行列式 再展开,降为2阶行列式 (2)对角线相乘 (3)依次按第一列展开 (4)与(3)一样 过程如下图:
线性代数行列式 求详细解答过程
由范德蒙行列式计算公式,得出该五阶行列式的值为:(b-a)(c-a)(c-b)(d-a)(d-b)(d-c)(x-a)(x-b)(x-c)(x-d)它和上面的展开式相等,我们所需要的是行列式D的值,所以我们需要算的就是展开式中x^3的系数,所以得出D= (a+b+c+d)(b-a)(c-a)(c-b)(d-a)(d-b)(d-c)...
计算行列式D,求大神详细解答
先把α+β加到第一行,然后提取出来。剩余的化成上三角。
线性代数用拉普拉斯定理计算行列式!求详细过程,求教图一。 还有一道...
解答过程如下:首先问题要求用拉普拉斯定理,要明确拉普拉斯定理的公式为D=M1A1+…+MtAt,M1,M2…为任取行所得到的行列式,然后再分别求所对应的代数余子式,进行行列式的计算就可以。第二道行列式我用的是初等变换,将行列式转换为上三角形行列式,根据公式直接用对角线上的数相乘即可得到答案。
计算行列式 3 1 -1 2 -5 1 3 -4 2 0 1 -1 1 -5 3 -3的值 有没有详细...
到这可直接写式子算了。但也可以接着搞,第三行加上第一行的二倍,然后第一行加上第二行的四倍,得 0 8 -10 2 1 -1 0 6 -5 按第一列展开(记得这次结果也是是负的,和前面的负号就负负得正了),得 2【8*(-5)-6*(-10)】=40 性质 ①行列式A中某行(或列)用同一数k乘,其...
线性求助,求详细过程
解答 首先,我们对这个行列式进行展开。\\begin{align*} &| x + a\\quad y\\quad z\\quad x \\quad a\\\\ & y\\quad x + a\\quad y\\\\ & y\\quad y\\quad x + c|\\\\ \\end{align*} 按第一列展开:\\begin{align*} &(x + a)\\times | x + a\\quad y\\\\ & y\\quad x + c| - y\\...
第三题计算行列式求详细的解答。。。
方法很多(列变换化上三角、列变换化下三角、行变换化上三角、行变换化下三角 都是方法。)r(n+1)-rn(c\/a)、rn+2-(rn-1)(c\/a)、...、r2n-r1(c\/a), 成【上三角】D2n=|a...b| ...0...d-bc\/a =(a^n)[(d-bc\/a)^n]=(ad-bc)^n ...