怎样解一元三次方程,举例说明

如题所述

第1个回答  2006-07-21
一元三次方程求根公式的解法

-------摘自高中数学网站

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
参考资料:摘自高中数学网站本回答被提问者采纳
第2个回答  2006-07-23
对于高于二次的代数方程,一般是没有解决办法的。卡当在书中列专题论述了多种方程的解法,甚至求得一些特殊三次方程的解。例如:方程6x3- 4x2 = 34x + 24,方程两边同时加上6x3 + 20x2,合并后得: 4x2(3x+4) = (2x2+4x+6)(3x+4),两边同除以3x+4,则由二次方程解得原方程的一个正根x=3。按当时的习惯,一般不承认方程有负根,解出一个正根就认为是解完了方程。
第3个回答  2006-07-21
先将3次项化为1得到形如x^3+ax^2+bx+c=0的方程,再设x=y-a/3,消去2次项得到形如y^3+py+q=0形式的方程,最后用卡丹公式求解。

卡丹公式,方程x^3+px+q=0

今D=q^2/4+p^3/27

则方程的解为
x=(-q/2+√D)^1/3+(-q/2-√D)^1/3

其中的3次根号要在复数范围内求解,这个公式共有9个解,但只有3个解是正确的,还要讨论。
第4个回答  2006-07-21
先将3次项化为1得到形如x^3+ax^2+bx+c=0的方程,再设x=y-a/3,消去2次项得到形如y^3+py+q=0形式的方程,最后用卡丹公式求解。

卡丹公式,方程x^3+px+q=0

今D=q^2/4+p^3/27

则方程的解为
x=(-q/2+√D)^1/3+(-q/2-√D)^1/3

其中的3次根号要在复数范围内求解,这个公式共有9个解,但只有3个解是正确的,还要讨论。
第5个回答  2006-07-23
他们说的有点复杂/分解因式了。把它化成两个低次一元方程再解。

如何解一元三次方程
1、一元三次方程的求根公式称为“卡尔丹诺公式”。一元三次方程的一般形式是x3+sx2+tx+u=0。2、如作一个横坐标平移y=x+s\/3,那么就可以把方程的二次项消去。所以只要考虑形如x3=px+q的三次方程。3、例子:假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。代入方程:a3-3a2b+...

一元三次方程怎样解?
一元三次方程的解法有:因式分解法、代入法、公式法、图形法。1、因式分解法 当一元三次方程具有特殊因式时,可以通过因式分解将方程化简为一个已知的二次方程,从而求得方程的根。例如,当ax3+bx2+cx+d=0具有形如(x-x1)的因式时,可利用因式(x-x1)进行除法运算,将原来的方程化成二次方程。

怎么解一元三次方程?比如?
(1)将x=A^(1\/3)+B^(1\/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1\/3)(A^(1\/3)+B^(1\/3))(3)由于x=A^(1\/3)+B^(1\/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1\/3)x,移项可得 (4)x^3-3(AB)^(1\/3)x-(A+B)=0,和一元三次方程和特殊型x...

怎么解一元三次方程?比如?
设p=c-b^2\/3,q=2b^3\/27-bc\/3+d,方程为y^3+py+q=0 再设 y=u+v{p=—3uv 则(u^3+v^3)+3uv(u+v)+p(u+v)+q=0 = u^3+v^3+q=0 所以q+u^3-(p\/(3u))^3=0,即(u^3)^2+qu^3-(p\/3)^3=0 设u^3=t,则t^2+qt-(p\/3)^3=0 解得t=(-q±(q^2+4...

一元三次方程怎样解?
一元三次方程定理为:x1x2x3=-d\/a 以下为证明:ax^3+bx^2+cx+d =a(x-x1)(x-x2)(x-x3)=a[x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3]对比系数得 -a(x1+x2+x3)=b a(x1x2+x2x3+x1x3)=c a(-x1x2x3)=d 即得 x1+x2+x3=-b\/a x1x2+x2x3+x1x3=c...

一元三次方程解法
1、对于一般形式的一元三次方程。2、做变换,差根变换,可以用综合除法。3、化为不含二次项的一元三次方程。4、想法把一元三次方程化成一元二次方程,关于u,v的三次方的二次方程,解出u,v。5、求出三个根,即可得出一元三次方程三个根的求根公式。一元三次方程解法思想是:通过配方和换元...

如何解一元三次方程
3、要求作一个三阶方程,它的特征方程是一个三次方程,有三个根,a1,a2,a3,若它们两两不等,那么通解就是c1*e^(a1x)+c2*e^(a2x)+c3*e^(a3x),从中我们看出有一个特解形式具有e^x,确定有一个特征根为1,不妨令a1=1.但是x这个特解不能在上述通解中找到,说明有重特征根,a2=a3,那么通解...

如何解一元三次方程
解一元三次方程的方法如下:1、公式法 若用A、B换元后,公式可简记为:x1=A^(1\/3)+B^(1\/3)。x2=A^(1\/3)ω+B^(1\/3)ω^2。x3=A^(1\/3)ω^2+B^(1\/3)ω。2、判别法 当△=(q\/2)^2+(p\/3)^3>0时,有一个实根和一对个共轭虚根。当△=(q\/2)^2+(p\/...

一元三次方程的解法
关于“一元三次方程的解法”如下:一、因式分解法 因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。例如:解方程x3-X...

一元三次方程万能解法
对于一元三次方程的求解,我们可以通过下面的步骤进行:1、首先,判断方程的根的类型,确定是使用求根公式还是其他的求解方法。2、计算q和r的值,代入求根公式中。3、按照公式求出各个根的值,并将复杂根分离成实部和虚部,得到三个解。4、验证所得解是否符合原方程,并对结果进行合理性检查。需要注意...

相似回答