定积分的换元法

如题所述

定积分的换元法:

定积分换元法是求积分的一种方法。定积分换元法主要通过引进中间变量作变量替换使原式简易,从而来求较复杂的不定积分,它是由链式法则和微积分基本定理推导而来的,定积分换元法是求积分的一种方法,它是由链式法则和微积分基本定理推导而来的。

定积分换元主要为了在计算被积函数的原函数时方便,换元就是把其中复杂的项用另外个其他的字母所代替,换元时有三部分需要换积分区间,就是在被积分涵数中你所用字母代替的项,例如你所要积的函数是x的。

定积分换元法的定义:

在计算函数导数时,复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。

从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。

在换元时把复杂的项用t来表示,然后求出x的多项式即用t的式子来表示x,这是为求第三步的dx中的x准备,然后把x的范围也就是积分区间的上下线求出各自所对应的t值作为新的上下线。

第二部求出新的积分函数,即用t所表示原来的函数,第三步即是在第一部所提到的求dx中的x用t表示,然后对这个式子求导即可。

定积分定义为:

定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

黎曼积分定义为:

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

温馨提示:内容为网友见解,仅供参考
无其他回答

定积分如何换元?
定积分的换元法大致有两类:第一类是凑微分,例如xdx=1\/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。第二类,令x=x(t),自然有dx=dx(t)=x'(t)dt,这里引入新的变量,积分限要由x的变换范围换成t的变化范围。例求在【0,1】上的定积分∫(1-x^2)^(1\/2)...

定积分的换元积分公式是什么?
定积分换元公式是∫baf(x)dx=∫βαf([φ(t)])φ′(t)dt。设函数f(x)在区间[a,b]上连续,函数x=φ(t)满足条件:(1)φ(α)=a,φ(β)=b。(2)φ(t)在[α,β](或 [β,α])上具有连续导数,且值域Rφ=[a,b],则有∫baf(x)dx=∫βαf([φ(t)])φ′(t)dt。证明:设...

如何区分定积分和不定积分的换元法?
1、定积分的换元法:定积分的换元法代换时上下限要做相应的变化,最后不必代回原来的变量。2、不定积分的换元法:不定积分的换元法最后必须代回原来的变量。二、定义范围不同 1、定积分的换元法:定积分的换元法对未知量x给出了定义的范围。2、不定积分的换元法:不定积分的换元法对未知量x...

定积分的换元法与积分的换元法有什么区别?
定积分换元法:设函数f(x)在区间[a,b]上连续;函数g(t)在区间[m,n]上是单值的且有连续导数;当t在区间[m,n]上变化时,x=g(t)的值在[a,b]上变化,且g(m)=a,g(n)=b;则有定积分的换元公式:

定积分换元法是什么?
定积分的换元法大致有两类:第一类是凑微分,例如xdx=1\/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。第二类,令x=x(t),自然有dx=dx(t)=x'(t)dt,这里引入新的变量,积分限要由x的变换范围换成t的变化范围。注意事项:换元积分法是求积分的一种方法。它是由...

定积分的换元法应该怎样用?
回答:我们知道求定积分可以转化为求原函数的增量,在前面我们又知道用换元法可以求出一些函数的原函数。因此,在一定条件下,可以用换元法来计算定积分。 定理:设函数f(x)在区间[a,b]上连续;函数g(t)在区间[m,n]上是单值的且有连续导数;当t在区间[m,n]上变化时,x=g(t)的值在[a,b]上变化...

定积分的换元法
定积分的换元法:定积分换元法是求积分的一种方法。定积分换元法主要通过引进中间变量作变量替换使原式简易,从而来求较复杂的不定积分,它是由链式法则和微积分基本定理推导而来的,定积分换元法是求积分的一种方法,它是由链式法则和微积分基本定理推导而来的。定积分换元主要为了在计算被积函数的原...

定积分与不定积分的换元法有何区别与联系?
1、定积分的换元法:定积分的换元法代换时上下限要做相应的变化,最后不必代回原来的变量。2、不定积分的换元法:不定积分的换元法最后必须代回原来的变量。二、定义范围不同 1、定积分的换元法:定积分的换元法对未知量x给出了定义的范围。2、不定积分的换元法:不定积分的换元法对未知量x...

定积分换元法?
换元公式 【定理】若 2、函数在区间上单值且具有连续导数; 证明: (1)式中的被积函数在其积分区间上均是连续, 故(1)式两端的定积分存在。且(1)式两端的被积函数的原函数均是存在的。 假设是在上的一个原...2.常用的变量替换技术与几个常用的结论 【例3】证明 1、若在上连续且为偶函数,则...

定积分中的换元法怎么做?
解答如下:∫cscx dx =∫1\/sinx dx =∫1\/[2sin(x\/2)cos(x\/2)] dx =∫1\/[sin(x\/2)cos(x\/2)] d(x\/2)=∫1\/tan(x\/2)*sec²(x\/2) d(x\/2)=∫1\/tan(x\/2) d[tan(x\/2)](∫sec²(x\/2)d(x\/2)=tan(x\/2)+C)=ln|tan(x\/2)|+C ...

相似回答
大家正在搜