三角形重心有什么性质?

如题所述

重心的几条性质 :

1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。

5.重心是三角形内到三边距离之积最大的点。

6.三角形ABC的重心为G,点P为其内部任意一点,则3PG²=(AP²+BP²+CP²)-1/3(AB²+BC²+CA²)。

7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3

8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB²+BC²+CA²)为半径的圆周上。

9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA²+PB²+PC²=GA²+GB²+GC²+3PG²。

扩展资料:

重心确定方法

1,组合法

工程中有些形体虽然比较复杂,但往往是由一些简单形体的组合,这些形体的重心通常是已知的或易求的。

2,负面积法

如果在规则形体上切去一部分,例如钻一个孔等,则在求这类形体的重心时,可以认为原形体是完整的,只是把切去的部分视为负值(负体积或负面积)。

3,实验法(平衡法)

如物体的形状不是由基本形体组成,过于复杂或质量分布不均匀,其重心常用实验方法来确定。主要包括悬挂法和称重法。

参考资料:百度百科--重心

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-05-09
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,
5、三角形内到三边距离之积最大的点。本回答被网友采纳
第2个回答  2021-04-19
三角形重心是三角形三条中线的交点。
性质一、重心到顶点的距离与重心到对边中点的距离之比为2:1。
性质二、重心和三角形3个顶点组成的3个三角形面积相等。
性质三、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
性质四、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。
性质五、三角形内到三边距离之积最大的点。
性质六、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。
性质七、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)
关于重心的顺口溜:
三条中线必相交,交点命名为重心
重心分割中线段,线段之比二比一;
扩展资料:
三角形的五心之其他四心:
内心:三角形三边的垂直平分线的交点叫三角形的外心.(外接圆的圆心)
外心:三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。
垂心:三角形的垂心是三角形三边上的高的交点(通常用H表示)。
旁心: 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。
第3个回答  2019-12-22
三角形重心的性质如下

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,

5、三角形内到三边距离之积最大的点。
第4个回答  2021-04-19
三角形重心
数学几何术语
三角形重心是指几何数学中三角形三边中线的交点。 当几何体为匀质物体时,重心与形心重合。

中文名
三角形重心
外文名
centroid
定义
三角形三条中线的交点
性质比例
重心到顶点与到对边中点比为2:1
应用领域
几何
94%的人还看了
三角形重心坐标公式
三角形三心
三角形垂心
最恐怖的数学定理
性质证明
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

三角形重心

例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。

求证:EG=1/2CG

证明:过E作EH∥BF交AC于H。

∵AE=BE,EH//BF

∴AH=HF=1/2AF(平行线分线段成比例定理)

又∵ AF=CF

∴HF=1/2CF

∴HF:CF=1/2

∵EH∥BF

∴EG:CG=HF:CF=1/2

∴EG=1/2CG

三角形重心

2、重心和三角形3个顶点组成的3个三角形面积相等。

证明方法:

在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:

OA'=1/3AA'

OB'=1/3BB'

OC'=1/3CC'

过O,A分别作a边上高OH',AH

可知OH'=1/3AH

则,S △BOC=1/2×OH'a=1/2×1/3AHa=1/3S △ABC

同理可证S △AOC=1/3S △ABC

S △AOB=1/3S △ABC

所以,S △BOC=S △AOC=S △AOB

3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)

证法一:

设三角形三个顶点为(x 1,y 1),(x 2,y 2),(x 3,y 3) 平面上任意一点为(x 0,y 0) 则该点到三顶点距离平方和为:

(x 1-x 0) 2+(y 1-y 0) 2+(x 2-x 0) 2+(y 2-y 0) 2+(x 3-x 0) 2+(y 3-y 0) 2

=3x 0 2-2x 0(x 1+x 2+x 3)+3y 0 2-2 0y(y 1+y 2+y 3)+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2

=3[x 0-1/3*(x 1+x 2+x 3)] 2+3[y 0-1/3*(y 1+y 2+y 3)] 2+x 1 2+x 2本回答被网友采纳

三角形重心有什么性质
三角形重心有五个性质,分别如下:一、解析 性质1、重心到顶点的距离与重心到对边中点的距离之比为2:1。性质2、重心和三角形3个顶点组成的3个三角形面积相等。性质3、重心倒三角形3个顶点距离平方的和最小。性质4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。性质5、三角形内到三边距...

三角形三条中线的交点叫什么,并且有什么性质
三角形重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。5、三角形内到三边距离之积最大的点。

三角形重心的六条性质是什么?
三角形重心的六条性质是:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离的平方和最小。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。5、重心是三角形内到三边距离之积最大的点。6、三角形ABC的...

三角形的重心是什么?
三角形重心是三角形内部的一个特殊点。它是三条从顶点出发,穿过相对边中点的线段的交点。也可以说,重心是三角形三条边的中点连线的交点。二、几何性质 重心具有许多重要的几何性质。例如,从重心出发,到三角形的每个顶点的线段,与相应的中线之间的比例是固定的,即等于该中线的两倍长度。此外,重心到...

三角形的重心性质
三角形重心的六条性质是1重心到顶点的距离与重心到对边中点的距离之比为212重心和三角形3个顶点组成的3个三角形面积相等3重心到三角形3个顶点距离的平方和最小4在平面直角坐标系中,重心的坐标是顶点。重心是三角形三边中线的交点,性质1重心到顶点的距离与重心到对边中点的距离之比为212重心和三角形3...

三角形重心性质是什么
1、重心到顶点的距离与重心到对边中点的距离之比为二比一。2、重心和三角形三个顶点组成的三个三角形面积相等。3、重心到三角形三个顶点距离平方的和较小。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,其横坐标为三角形三个顶点的横坐标之和的三分之一,其纵坐标为三角形三个顶点的...

三角形重心的性质
三角形重心的性质

三角形重心有什么性质?
重心的几条性质 :1.重心到顶点的距离与重心到对边中点的距离之比为2:1。2.重心和三角形3个顶点组成的3个三角形面积相等。3.重心到三角形3个顶点距离的平方和最小。4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。5.重心是三角形内到三边距离之积最大的点。6.三角形ABC的重心为G,...

三角形重心性质
三角形重心性质:1、三角形重心到顶点的距离与重心到对边中点的距离之比为2:1。2、三角形的重心和三个顶点组成的三个三角形面积相等,即重心到三条边的距离与三条边的长成反比。3、三角形的重心是三角形内到三边距离之积最大的点。4、以重心为起点,以三角形三顶点为终点的三条向量之和等于零...

三角形重心的性质及特点
三角形重心的性质及特点如下:三角形的重心是连接三角形的三个顶点与对边中点的垂直平分线的交点。即在三角形的三条中线的交点处。性质及特点:1、平衡性质:三角形的重心被认为是几何中心中最具有平衡性质的一个,因为重心是三条中线的交点,中线是三角形的边的中点连接顶点的线段,所以三角形的重心可以...

相似回答