哥德八赫猜想是什么、

如题所述

第1个回答  2014-03-09
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数(就是质数)之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"欧拉回信说:“这个命题看来是正确的”。但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。   但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。   现在通常把这两个命题统称为哥德巴赫猜想。

哥德巴赫猜想是什么
1、即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。2、哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也...

哥德巴赫猜想是什么 哥德巴赫猜想介绍
1、哥德巴赫猜想,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”,是一个著名的数学问题。它指出,任何大于2的偶数都可以表示为两个素数之和。2、哥德巴赫在1742年给欧拉的信中首次提出了这个猜想。他提出,每一个大于2的整数都可以分解为三个质数之和。尽管哥德巴赫自己未能证明这一猜想,他...

哥德巴赫猜想是什么?
从关于偶数的哥德巴赫猜想,可推出: 任一大于7的奇数都可写成三个质数之和 的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇...

什么是“哥德巴赫猜想”
“哥德巴赫猜想”是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陈述为:“任一大于2的偶数,都可表示成两个素数之和。“【将一个偶数用两个质数之和表示的方法,等于同一横线上,蓝线和...

什么是哥德巴赫猜想?
哥德巴赫猜想是数论中的一个著名未解决问题,由德国数学家克里斯蒂安·哥德巴赫于1742年提出。该猜想有两个等价的表述形式:强哥德巴赫猜想:任一大于2的偶数都可以表示为两个素数之和。弱哥德巴赫猜想:任一大于7的奇数都可以表示为三个素数之和。

哥德八赫猜想是什么、
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在...

什么是哥德巴赫猜想?
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在...

哥德巴赫猜想是什么
哥德巴赫猜想是指任何大于2的偶数都可以表示为两个质数之和。哥德巴赫猜想是数学领域中的一个著名未解问题,它源于18世纪德国数学家哥德巴赫的一封信。在信中,他向数学家欧拉提出了这个问题,即是否每个大于2的偶数都可以写成两个质数之和。尽管这个问题看似简单,但数学家们一直未能找到一个普遍适用的...

哥德巴赫猜想是什么
哥德巴赫猜想可表述为:a) 任一不小于6之偶数,都可以表示成两个奇质数之和;b) 任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。把命题"任何一...

哥德巴赫猜想是什么?
1742年哥德巴赫提出了猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。朋友欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题...

相似回答