定积分求导公式是什么?

如题所述

定积分求导公式:

例题:


扩展资料:

定积分一般定理:

1、设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

2、设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

3、设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

3、牛顿-莱布尼茨公式:

如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么

用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

一般求导公式:

1、C'=0(C为常数);

2、(Xn)'=nX(n-1) (n∈R);

3、(sinX)'=cosX;

4、(cosX)'=-sinX;

5、(aX)'=aXIna (ln为自然对数);

6、(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);

7、(tanX)'=1/(cosX)2=(secX)2

8.、cotX)'=-1/(sinX)2=-(cscX)2

9、(secX)'=tanX secX;

10、(cscX)'=-cotX cscX;

参考资料:百度百科-定积分

温馨提示:内容为网友见解,仅供参考
无其他回答

定积分求导公式
定积分求导公式d\/dx∫f(x)dx=f(x)。定积分介绍:是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。一个函数,可以存在不...

定积分求导公式是什么?
定积分求导公式:例题:

定积分求导
=2xe^(x^2).

定积分的求导公式是什么?
定积分的求导公式为:对于连续函数f,其定积分的结果函数F的导数满足F' = f。也就是说,定积分的结果函数对x的导数等于原函数的导数。这是微积分中的一个基本定理,对于解决涉及定积分与导数的问题至关重要。下面进行 一、定积分的概念 定积分是数学中的一种积分形式,用于求解某一函数在特定区间上...

定积分求导怎么计算?
定积分求导可以通过定积分求导公式[∫(a,c)f(x)dx]=0来实现。定积分求导可以通过定积分求导公式来实现,具体题目再具体分析,定积分求导公式为:[∫(a,c)f(x)dx]=0。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则...

定积分求导的公式
定积分求导公式:[∫(a,c)f(x)dx]=0。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。积分是微积分学与数学...

定积分求导公式
求导过程如下:定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。“求定积分...

为什么定积分的求导公式是f'x*∫fxdx?
1、定积分是数学中的一个重要概念,它表示的是一个函数在一个区间上的总和。定积分的求导公式是微积分学中的重要公式之一,也是解决复杂函数求导问题的重要工具。定积分的求导公式可以表示为:∫fxdx'=f'x*∫fxdx。2、f'x表示函数fx的导数,∫fxdx表示函数fx在某个区间上的定积分。这个公式的含义...

定积分求导
详情请查看视频回答

定积分求导的公式?
定积分求导的公式为:对于函数f的定积分,其导数等于f。也就是说,如果存在一个函数f,对其在某一区间上的定积分进行求导,那么结果仍然是f。详细解释如下:定积分的求导公式说明 定积分是数学中的一种积分运算方式,其结果表示函数在一定区间上的面积或累积量。而导数则描述了函数在某一点的局部变化率...

相似回答
大家正在搜