小学四年级数学奥数题

有题有答案,不然不给分

1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?

分析:从5个元素中取3个的排列:P(5、3)=5×4×3=60

2、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?

分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216

另:此题乘法原理、加法原理结合用也是很好的方法。

3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?

分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。

4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?

分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;

首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。

5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

分析:这样的四位数共有P(4、1)×P(4、3)=96个

1、2、3、4在首位各有96÷4=24次,和为(1+2+3+4)×1000×24=240000;
1、2、3、4在百位各有24÷4×3=18次,和为(1+2+3+4)×100×18=18000;
1、2、3、4在十位各有24÷4×3=18次,和为(1+2+3+4)×10×18=1800;
1、2、3、4在个位各有24÷4×3=18次,和为(1+2+3+4)×1×18=180;

总和为240000+18000+1800+180=259980

6、计算机上编程序打印出前10000个正整数:1、2、3、……、10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x,问其中被错误打印的共有多少个数?

分析:共有10000个数,其中不含数字3的有: 五位数1个,四位数共8×9×9×9=5832个,三位数共8×9×9=648个,二位数共8×9=72个,一位数共8个,不含数字3的共有1+5832+648+72+8=6561 所求为10000-6561=3439个

7、在1000到9999之间,千位数字与十位数字之差(大减小)为2,并且4个数字各不相同的四位数有多少个?

分析:1□3□结构:8×7=56,3□1□同样56个,计112个;
2□4□结构:8×7=56,4□2□同样56个,计112个;
3□5□结构:8×7=56,5□3□同样56个,计112个;
4□6□结构:8×7=56,6□4□同样56个,计112个;
5□7□结构:8×7=56,7□5□同样56个,计112个;
6□8□结构:8×7=56,8□6□同样56个,计112个;
7□9□结构:8×7=56,9□7□同样56个,计112个;
2□0□结构:8×7=56,
以上共112×7×56=840个

8、如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?

分析:因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47

9、某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?

分析:方法一:一张车票包括起点和终点,原来有P(7、2)=42张,(相当于从7个元素中取2个的排列),现在有P(10、2)=90,所以增加90-42=48张不同车票。

方法二:1、新站为起点,旧站为终点有3×7=21张,2、旧站为起点,新站为终点有7×3=21张,3、起点、终点均为新站有3×2=6张,以上共有21+21+6=48张

10、7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?

分析:因为7=1+1+1+1+1+1+1,相当于从6个加号中取3个的组合,C(6、3)=20种

11、从19、20、21、22、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?

分析:76个数中,奇数38个,偶数38个 偶数+偶数=偶数:C(38、2)=703种,奇数+奇数=偶数:C(38、2)=703种,以上共有703+703=1406种

12、用两个3,一个1,一个2可组成若干个不同的四位数,这样的四位数一共有多少个?

分析:因为有两个3,所以共有P(4、4)÷2=12个

13、有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况共有多少种?

分析:第一步考虑从5个元素中取3个来进行错贴,共有C(5、3)=10,第二步对这3个瓶子进行错贴,共有2种错贴方法,所以可能情况共有10×2=20种。

14、有9张同样大小的圆形纸片,其中标有数码“1”的有1张,标有数码“2”的有2张,标有数码“3”的有3张,标有数码“4”的有3张,把这9张圆形纸片如呼所示放置在一起,但标有相同数码的纸片不许*在一起。 ⑴如果M处放标有数码“3”的纸片,一共有多少种不同的放置方法? ⑵如果M处放标有数码“2”的纸片,一共有多少种不同的放置方法?

分析:

⑴如果M处放标有数码“3”的纸片,只有唯一结构: 在剩下的6个位置中,3个“4”必须隔开,共有奇、偶位2种放法,在剩下的3个位置上“1”有3种放法(同时也确定了“2”的放法)。 由乘法原理得共有2×3=6种不同的放法。

⑵如果M处放标有数码“2”的纸片,有如下几种情况:

结构一: 3个“3”和3个“4”共有2种放法,再加上2和1可以交换位置,所以共有2×2=4种;

结构二:3个“4”有奇、偶位2种选择(相应的“1”也定了,只能*着已有的“3”,加上2和3可以交换,所以共有2×2=4种;

结构三:3个“3”有奇、偶位2种选择,“1”有唯一选择,只能*到已有的“4”,加上2和4可以交换位置,所以共有2×2=4种,

以上共有4+4+4=12种不同的放法。

15、一台晚会上有6个演唱节目和4个舞蹈节目。问:⑴如果4个舞蹈节目要排在一起,有多少种不同的安排顺序?⑵如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?

分析:⑴4个舞蹈节目要排在一起,好比把4个舞蹈?在一起看成一个节目,这样和6个演唱共有7个节目,全排列7!,加上4个舞蹈本身也有全排4!,所以共有7!×4!=120960种。

⑵4个舞蹈必须放在6个演唱之间,6个演唱包括头尾共有7个空档,7个空档取出4个放舞蹈共有P(7、4),加上6个演唱的全排6!,共有P(7、4)×6!=604800种。
1.计算:1991+199.1+19.91+1.991.

解析:1991+199.1+19.91+1.991
=1991+9+199.1+0.9+19.91+0.09+1.991+0.009-(9+0.9+0.09+0.009)
=2000+200+20+2-9.999
=2222-10+0.001
=2212.001

2.计算:7142.85÷3.7÷2.7×1.7×0.7.

解析:7142.85÷3.7÷2.7×1.7×0.7
=7142.85÷37÷27×17×7
=7142.85×7÷999×17
=49999.95÷999×17
=50.05×17
=850.85

3.光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟?(答案保留一位小数.)

解析:150000000÷300000÷60=150÷3÷6=50÷6≈8.33≈8.3(分)
光从太阳到地球要用约8.3分钟。

4.已知105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)=187.5,那么□所代表的数是多少?
解析:105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)
=105.5+(20+□÷4.6-1.53)÷(2×26.8÷26.8×0.125)
=105.5+(18.47+□÷4.6) ÷0.25
=105.5+18.47÷0.25+□÷4.6÷0.25
=105.5+73.88+□÷1.15
因为105.5+73.88+□÷1.15=187.5
所以□=(187.5-105.5-73.88) ×1.15=8.12×1.15=8.12+0.812+0.406=9.338
答:□=9.338

5.22.5-(□×32-24×□) ÷3.2=10 在上面算式的两个方框中填入相同的数,使得等式成立。那么所填的数应是多少?

解析:22.5-(□×32-24×□) ÷3.2
=22.5-□×(32-24) ÷3.2
=22.5-□×8÷3.2
=22.5-□×2.5
因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10) ÷2.5=5
答:所填的数应是5。

6.计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99.

解析:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99
=(0.1+0.9) ×5÷2+(0.11+0.99) ×45÷2
=2.5+24.75
=27.25

7.计算:37.5×21.5×0.112+35.5×12.5×0.112.

解析:37.5×21.5×0.112+35.5×12.5×0.112
=0.112×(37.5×21.5+35.5×12.5)
=0.112×(12.5×3×21.5+35.5×12.5)
=0.112×12.5×(3×21.5+35.5)
=0.112×12.5×100
=1250×(0.1+0.01+0.002)
=125+12.5+2.5
=140

8.计算:3.42×76.3+7.63×57.6+9.18×23.7.

解析:3.42×76.3+7.63×57.6+9.18×23.7
=7.63×(34.2+57.6)+9.18×23.7
=7.63×91.8+91.8×2.37
=(7.63+2.37) ×91.8
=10×91.8
=918

9.计算:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2).

解析:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2)
=(16.4×2×91-16.4×92-16.4×40×1.75) ÷(0.2×0.2)
=16.4×(182-92-70) ÷(0.2×0.2)
=16.4×20÷0.2÷0.2
=82×100
=8200

10.计算:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87).

解析:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)
=(2+3.15+5.87) ×(3.15+5.87+7.32)-2×(3.15+5.87) -(3.15+5.87+7.32) ×(3.15+5.87)
=(3.15+5.87+7.32) ×(2+3.15+5.87-3.15-5.87) -2×(3.15+5.87)
=(3.15+5.87+7.32) ×2-2×(3.15+5.87)
=(3.15+5.87) ×2+7.32 ×2-2×(3.15+5.87)
=7.32×2
=14.64

11.求和式3+33+333+…+33…3(10个3)计算结果的万位数字.

解析:个位10个3相加,和为30,向十位进3; 十位9个3相加,和为27,加上个位的进位3得30,向百位进3; 百位8个3相加,和为24,加上十位的进位3得27,向千位进2; 千位7个3相加,和为21,加上百位的进位2得23,向万位进2; 万位6个3相加,和为18,加上千位的进位2得20,万位得数是0。
答:计算结果的万位数字是0。

12.计算:19+199+1999+…+199…9(1999个9).

解析:19+199+1999+…+199…9(1999个9)
=(20-1)+(200-1)+(2000-1)+…+(200…0(1999个0)-1)
=22…20(1999个2)-1999×1
=22…2(1996个2)0221

13.算式99…9(1992个9)×99…9(1992个9)+199…9(1992个9)的计算结果的末位有多少个零?

解析:99…9(1992个9)×99…9(1992个9)+199…9(1992个9)
=99…9(1992个9)×(100…0-1)(1992个0)+199…9(1992个9)
=99…9(1992个9) 0(1992个0) - 99…9(1992个9)+199…9(1992个9)
=99…9(1992个9) 0(1992个0)+100…0(1992个0)
=100…0(3984个0)

14.计算:33…3(10个3)×66…6(10个6).

解析:33…3(10个3)×66…6(10个6)
=33…3(10个3)×3×22…2(10个2)
=99…9(10个9)×22…2(10个2)
=(100…0(10个0)-1) ×22…2(10个2)
=22…2(10个2)00…0(10个0)-22…2(10个2)
=22…2(9个2)177(9个7)8

15.求算式99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)的计算结果的各位数字之和.

解析:99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)
=9×11…1(1994个1)×8×11…1(1994个1)÷6÷11…1(1994个1)
=9×8÷6×11…1(1994个1)
=12×11…1(1994个1)
=(10+2)×11…1(1994个1)
=11…1(1995个1)+22…2(1994个1)
=13333…3(1993个1) 2
各位数字之和=1+1993×3+2=5982
答:计算结果的各位数字之和5982。

参考资料:http://www.aoshu.com/shanghai/aoshutk/

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-08-16
1,32×29-18×32-32
2,153×54+71×46+82×46
3,79000÷125÷8
4,1726×9999
5,12345+23451+34512+45123+51234
6,(1)2,3,5,8,(
),(
),34。
(2)58,57,55,52,48,(
),(
),30。
(3)5,6,10,12,15,18,(
),(


(4)1,40,3,30,5,20,(
)(
)
7,找规律填空
1+2,2+4,3+6,4+8,1+10,2+12,3+14,4+16+1+18,……,问第2009年算式是(
)+(
)。
填号题
1.
在下式中填上适当的运算符号和括号,使等式成立。
1
2
3
4
5=100
2.在下面9个5之间填上适当的运算符号,使等式成立。
5
5
5
5
5
5
5
5
5=100
3.在下面的式子里添上+-×÷或(),
使等
式成立。
1
2
3
4
5=10
5.在下面的式子里添上括号,使等式成立。
7×9+12÷3-2=23
应用题
1.
杰杰问奶奶:“您今年几岁?”奶奶说:“用我的年龄减去6后,缩小9倍,再加上2之各,扩大8倍,恰好是80岁。你算算,奶奶今年多少岁?”
2.
某数加上14,除以3,再减去26,最后乘25,得100。这个数是多少?
3.
四年级同学参加兴趣小级,其中一半多2人参加合唱组,剩下的一半多2人参加书法级,余下的一半多2人参加航模组,最后5人参加棋类组。问四年级共有多少人参加兴趣小组?
4.
学校要栽36棵树苗,四(1)班先分别拿了树苗若干棵,后来四(1)班分给了四(2)班10棵,四(2)班人不够,以又还给四(1)班6棵,这时四(1)班的棵数是四(2)班的2倍。问最初四(1)班拿了多少棵?
5.
一个盒子里放着一些彩球,一个小朋友从盒子里往外拿球,拿的拿是:每次总要拿出盒子里彩球总数的一半然后再放回一个。这个小朋友按此规拿了399次后,盒子里还有2个彩球。求刚开始时盒子里的彩球数。
第2个回答  2012-07-10
1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?

分析:从5个元素中取3个的排列:P(5、3)=5×4×3=60

2、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?

分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216

另:此题乘法原理、加法原理结合用也是很好的方法。

3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?

分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。

4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?

分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;

首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。

5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

分析:这样的四位数共有P(4、1)×P(4、3)=96个

1、2、3、4在首位各有96÷4=24次,和为(1+2+3+4)×1000×24=240000;
1、2、3、4在百位各有24÷4×3=18次,和为(1+2+3+4)×100×18=18000;
1、2、3、4在十位各有24÷4×3=18次,和为(1+2+3+4)×10×18=1800;
1、2、3、4在个位各有24÷4×3=18次,和为(1+2+3+4)×1×18=180;

总和为240000+18000+1800+180=259980

6、计算机上编程序打印出前10000个正整数:1、2、3、……、10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x,问其中被错误打印的共有多少个数?

分析:共有10000个数,其中不含数字3的有: 五位数1个,四位数共8×9×9×9=5832个,三位数共8×9×9=648个,二位数共8×9=72个,一位数共8个,不含数字3的共有1+5832+648+72+8=6561 所求为10000-6561=3439个

7、在1000到9999之间,千位数字与十位数字之差(大减小)为2,并且4个数字各不相同的四位数有多少个?

分析:1□3□结构:8×7=56,3□1□同样56个,计112个;
2□4□结构:8×7=56,4□2□同样56个,计112个;
3□5□结构:8×7=56,5□3□同样56个,计112个;
4□6□结构:8×7=56,6□4□同样56个,计112个;
5□7□结构:8×7=56,7□5□同样56个,计112个;
6□8□结构:8×7=56,8□6□同样56个,计112个;
7□9□结构:8×7=56,9□7□同样56个,计112个;
2□0□结构:8×7=56,
以上共112×7×56=840个

8、如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?

分析:因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47

9、某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?

分析:方法一:一张车票包括起点和终点,原来有P(7、2)=42张,(相当于从7个元素中取2个的排列),现在有P(10、2)=90,所以增加90-42=48张不同车票。

方法二:1、新站为起点,旧站为终点有3×7=21张,2、旧站为起点,新站为终点有7×3=21张,3、起点、终点均为新站有3×2=6张,以上共有21+21+6=48张

10、7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?

分析:因为7=1+1+1+1+1+1+1,相当于从6个加号中取3个的组合,C(6、3)=20种

11、从19、20、21、22、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?

分析:76个数中,奇数38个,偶数38个 偶数+偶数=偶数:C(38、2)=703种,奇数+奇数=偶数:C(38、2)=703种,以上共有703+703=1406种

12、用两个3,一个1,一个2可组成若干个不同的四位数,这样的四位数一共有多少个?

分析:因为有两个3,所以共有P(4、4)÷2=12个

13、有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况共有多少种?

分析:第一步考虑从5个元素中取3个来进行错贴,共有C(5、3)=10,第二步对这3个瓶子进行错贴,共有2种错贴方法,所以可能情况共有10×2=20种。

14、有9张同样大小的圆形纸片,其中标有数码“1”的有1张,标有数码“2”的有2张,标有数码“3”的有3张,标有数码“4”的有3张,把这9张圆形纸片如呼所示放置在一起,但标有相同数码的纸片不许*在一起。 ⑴如果M处放标有数码“3”的纸片,一共有多少种不同的放置方法? ⑵如果M处放标有数码“2”的纸片,一共有多少种不同的放置方法?

分析:

⑴如果M处放标有数码“3”的纸片,只有唯一结构: 在剩下的6个位置中,3个“4”必须隔开,共有奇、偶位2种放法,在剩下的3个位置上“1”有3种放法(同时也确定了“2”的放法)。 由乘法原理得共有2×3=6种不同的放法。

⑵如果M处放标有数码“2”的纸片,有如下几种情况:

结构一: 3个“3”和3个“4”共有2种放法,再加上2和1可以交换位置,所以共有2×2=4种;

结构二:3个“4”有奇、偶位2种选择(相应的“1”也定了,只能*着已有的“3”,加上2和3可以交换,所以共有2×2=4种;

结构三:3个“3”有奇、偶位2种选择,“1”有唯一选择,只能*到已有的“4”,加上2和4可以交换位置,所以共有2×2=4种,

以上共有4+4+4=12种不同的放法。

15、一台晚会上有6个演唱节目和4个舞蹈节目。问:⑴如果4个舞蹈节目要排在一起,有多少种不同的安排顺序?⑵如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?

分析:⑴4个舞蹈节目要排在一起,好比把4个舞蹈?在一起看成一个节目,这样和6个演唱共有7个节目,全排列7!,加上4个舞蹈本身也有全排4!,所以共有7!×4!=120960种。

⑵4个舞蹈必须放在6个演唱之间,6个演唱包括头尾共有7个空档,7个空档取出4个放舞蹈共有P(7、4),加上6个演唱的全排6!,共有P(7、4)×6!=604800种。
1.计算:1991+199.1+19.91+1.991.

解析:1991+199.1+19.91+1.991
=1991+9+199.1+0.9+19.91+0.09+1.991+0.009-(9+0.9+0.09+0.009)
=2000+200+20+2-9.999
=2222-10+0.001
=2212.001

2.计算:7142.85÷3.7÷2.7×1.7×0.7.

解析:7142.85÷3.7÷2.7×1.7×0.7
=7142.85÷37÷27×17×7
=7142.85×7÷999×17
=49999.95÷999×17
=50.05×17
=850.85

3.光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟?(答案保留一位小数.)

解析:150000000÷300000÷60=150÷3÷6=50÷6≈8.33≈8.3(分)
光从太阳到地球要用约8.3分钟。

4.已知105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)=187.5,那么□所代表的数是多少?
解析:105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)
=105.5+(20+□÷4.6-1.53)÷(2×26.8÷26.8×0.125)
=105.5+(18.47+□÷4.6) ÷0.25
=105.5+18.47÷0.25+□÷4.6÷0.25
=105.5+73.88+□÷1.15
因为105.5+73.88+□÷1.15=187.5
所以□=(187.5-105.5-73.88) ×1.15=8.12×1.15=8.12+0.812+0.406=9.338
答:□=9.338

5.22.5-(□×32-24×□) ÷3.2=10 在上面算式的两个方框中填入相同的数,使得等式成立。那么所填的数应是多少?

解析:22.5-(□×32-24×□) ÷3.2
=22.5-□×(32-24) ÷3.2
=22.5-□×8÷3.2
=22.5-□×2.5
因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10) ÷2.5=5
答:所填的数应是5。

6.计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99.

解析:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99
=(0.1+0.9) ×5÷2+(0.11+0.99) ×45÷2
=2.5+24.75
=27.25

7.计算:37.5×21.5×0.112+35.5×12.5×0.112.

解析:37.5×21.5×0.112+35.5×12.5×0.112
=0.112×(37.5×21.5+35.5×12.5)
=0.112×(12.5×3×21.5+35.5×12.5)
=0.112×12.5×(3×21.5+35.5)
=0.112×12.5×100
=1250×(0.1+0.01+0.002)
=125+12.5+2.5
=140

8.计算:3.42×76.3+7.63×57.6+9.18×23.7.

解析:3.42×76.3+7.63×57.6+9.18×23.7
=7.63×(34.2+57.6)+9.18×23.7
=7.63×91.8+91.8×2.37
=(7.63+2.37) ×91.8
=10×91.8
=918

9.计算:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2).

解析:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2)
=(16.4×2×91-16.4×92-16.4×40×1.75) ÷(0.2×0.2)
=16.4×(182-92-70) ÷(0.2×0.2)
=16.4×20÷0.2÷0.2
=82×100
=8200

10.计算:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87).

解析:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)
=(2+3.15+5.87) ×(3.15+5.87+7.32)-2×(3.15+5.87) -(3.15+5.87+7.32) ×(3.15+5.87)
=(3.15+5.87+7.32) ×(2+3.15+5.87-3.15-5.87) -2×(3.15+5.87)
=(3.15+5.87+7.32) ×2-2×(3.15+5.87)
=(3.15+5.87) ×2+7.32 ×2-2×(3.15+5.87)
=7.32×2
=14.64

11.求和式3+33+333+…+33…3(10个3)计算结果的万位数字.

解析:个位10个3相加,和为30,向十位进3; 十位9个3相加,和为27,加上个位的进位3得30,向百位进3; 百位8个3相加,和为24,加上十位的进位3得27,向千位进2; 千位7个3相加,和为21,加上百位的进位2得23,向万位进2; 万位6个3相加,和为18,加上千位的进位2得20,万位得数是0。
答:计算结果的万位数字是0。

12.计算:19+199+1999+…+199…9(1999个9).

解析:19+199+1999+…+199…9(1999个9)
=(20-1)+(200-1)+(2000-1)+…+(200…0(1999个0)-1)
=22…20(1999个2)-1999×1
=22…2(1996个2)0221

13.算式99…9(1992个9)×99…9(1992个9)+199…9(1992个9)的计算结果的末位有多少个零?

解析:99…9(1992个9)×99…9(1992个9)+199…9(1992个9)
=99…9(1992个9)×(100…0-1)(1992个0)+199…9(1992个9)
=99…9(1992个9) 0(1992个0) - 99…9(1992个9)+199…9(1992个9)
=99…9(1992个9) 0(1992个0)+100…0(1992个0)
=100…0(3984个0)

14.计算:33…3(10个3)×66…6(10个6).

解析:33…3(10个3)×66…6(10个6)
=33…3(10个3)×3×22…2(10个2)
=99…9(10个9)×22…2(10个2)
=(100…0(10个0)-1) ×22…2(10个2)
=22…2(10个2)00…0(10个0)-22…2(10个2)
=22…2(9个2)177(9个7)8

15.求算式99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)的计算结果的各位数字之和.

解析:99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)
=9×11…1(1994个1)×8×11…1(1994个1)÷6÷11…1(1994个1)
=9×8÷6×11…1(1994个1)
=12×11…1(1994个1)
=(10+2)×11…1(1994个1)
=11…1(1995个1)+22…2(1994个1)
=13333…3(1993个1) 2
各位数字之和=1+1993×3+2=5982
答:计算结果的各位数字之和5982。
第3个回答  2009-08-26
1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?

分析:从5个元素中取3个的排列:P(5、3)=5×4×3=60

2、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?

分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216

另:此题乘法原理、加法原理结合用也是很好的方法。

3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?

分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。

4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?

分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;

首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。

5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

分析:这样的四位数共有P(4、1)×P(4、3)=96个

1、2、3、4在首位各有96÷4=24次,和为(1+2+3+4)×1000×24=240000;
1、2、3、4在百位各有24÷4×3=18次,和为(1+2+3+4)×100×18=18000;
1、2、3、4在十位各有24÷4×3=18次,和为(1+2+3+4)×10×18=1800;
1、2、3、4在个位各有24÷4×3=18次,和为(1+2+3+4)×1×18=180;

总和为240000+18000+1800+180=259980

6、计算机上编程序打印出前10000个正整数:1、2、3、……、10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x,问其中被错误打印的共有多少个数?

分析:共有10000个数,其中不含数字3的有: 五位数1个,四位数共8×9×9×9=5832个,三位数共8×9×9=648个,二位数共8×9=72个,一位数共8个,不含数字3的共有1+5832+648+72+8=6561 所求为10000-6561=3439个

7、在1000到9999之间,千位数字与十位数字之差(大减小)为2,并且4个数字各不相同的四位数有多少个?

分析:1□3□结构:8×7=56,3□1□同样56个,计112个;
2□4□结构:8×7=56,4□2□同样56个,计112个;
3□5□结构:8×7=56,5□3□同样56个,计112个;
4□6□结构:8×7=56,6□4□同样56个,计112个;
5□7□结构:8×7=56,7□5□同样56个,计112个;
6□8□结构:8×7=56,8□6□同样56个,计112个;
7□9□结构:8×7=56,9□7□同样56个,计112个;
2□0□结构:8×7=56,
以上共112×7×56=840个
第4个回答  2009-08-26
同学们去礼堂听法制教育报告。如果每张长椅上坐8人,则剩下50人没有座位,如果每张长椅上坐12人,则空出10个座位,如果每张长椅上坐7人,还剩下多少学生无座位?

:(50+10)/(12-8)=15(长椅数)
15*(8-7)+50=65

小学四年级奥数题及答案6篇
分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。3.小学四年级奥数题及答案 篇三 1、有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧2...

小学四年级奥数题及参考答案
小学四年级奥数题及参考答案篇一 1、计算236×37×27 参考答案:236×37×27 =236×(37×3×9)=236×(111×9)=236×999 =236×(1000-1)=236000-236 =235764 2、计算333×334+999×222 参考答案:333×334+999×222 =333×334+333×(3×222)=333×(334+666)=333×1000 =3330...

四年级的奥数题有哪些
1、欧欧、小美、奥斑马、龙博士四人每人有一筐苹果,如果欧欧拿出12个给小美,小美拿出14个给奥斑马,奥斑马拿出22个给龙博士,龙博士拿出16个给欧欧后,四人筐子里的苹果一样多,此时4筐苹果共有112个,求原来每人各有多少个苹果?2、学校有一批树苗,交给若干少先队员去载,一次一次往下分,每次分...

四年级奥数题【五篇】
【第一篇:乙原来有多少的糖豆】甲、乙、丙三人各有糖豆若干粒,甲从乙处取来一些糖豆,使自己的糖豆增加了一倍;乙接着从丙处取来一些糖豆,使自己的糖豆也增加了一倍;丙再从甲处取来一些糖豆,也使自己的糖豆增加了一倍。现在三人的糖豆一样多。如果开始时甲有51粒糖豆,那么乙最开始有多少粒糖豆...

小学四年级奥数题及答案解析(六篇)
小学四年级奥数题及答案解析篇六 地理老师在黑板上挂了一张世界地图,并给五大洲的每一个洲都标上一个代号,让学生认出五个洲,五个学生分别回答如下 甲:3号是欧洲,2号是美洲;乙:4号是亚洲,2号是大洋洲;丙:1号是亚洲,5号是非洲;丁:4号是非洲,3号是大洋洲;戊:2号是欧洲,5号...

问四年级好懂一些的奥数题。要有过程和答案。题最好不要很长,简短一些...
四年级有60名同学去栽树,平均每人栽4棵,所以总共栽树60名同学 × 4棵\/人 = 240棵。又派来一部分同学后,平均每人栽树3棵就可完成任务。设又派来了x名同学,那么总共的树苗数量是240棵 + x棵。根据平均数公式,总树苗数量 ÷ (60名同学 + x名同学) = 3棵\/人,解得x = 240棵 ÷ 3棵...

小学四年级奥数题及答案【5篇】
1.小学四年级奥数题及答案 小王和小李平时酷爱打牌,而且推理能力都很强:一天,他们和胡教授围着桌子打牌,胡教授给他们出了道推理题。胡教授从桌子上抽取了如下18张扑 克牌:红桃:A,Q,4 黑桃:J,8,4,2,7,3,5 草花:K,Q,9,4,6,10 方块:A,9 胡教授从这18张牌中挑出一张...

小学四年级等量代换奥数题【五篇】
【 #小学奥数# 导语】明天,这是个美丽灿烂、辉映着五光十色的迷人的字眼。愿你的明天无限美丽、无限灿烂、无限迷人!以下是 为大家整理的《小学四年级等量代换奥数题【五篇】》供您查阅。【篇一】难度:一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。一只小猪的重量等于几只鸭的...

这几道小学四年级奥数题,很多家长不会,你会做吗?
第一题【题目】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的阴影部分面积是多少平方厘米?【解析】此题属于正方形网格中的格点多边形,适用于毕克定理公式1求解。解:根据毕克定理公式1:S=N+L\/2-1,在阴影部分中,N=4,L=7,代入公式,有 S=4+7÷2-1=6.5(平方厘米)答:...

四年级数学(奥数题)-|||--=8,-4=68时-|||-则=( ),=( )-|||-+|||...
接下来根据题意:-4 = 68 时,我们可以推出 "|||" 的值为 68。然后根据题意:-|||-则=,这里 "|||" 的值为 68,所以结果为 -68。最后根据题意:= -68 + |||,根据之前的计算结果, "|||" 的值为 8,所以结果为 -68 + 8 = -60。所以答案是:-|||-则= -68,= -60。

相似回答