用直接证明法和间接证明法来证明(离散数学)

证明:M是偶整数则m+7是奇整数。 原文(
Prove that if m is an even integer, then m+7 is an odd integer. You need to prove it different ways: by direct proof, by indirect proof, and proof by contradiction.)

直接法:因为m为偶整数,可设为m=2n,
则m+7=2n+7=2(n+3)+1为奇整数
间接法:(反证法)假设m+7不是奇整数,则m+7为偶 整数,可设为m+7=2n,则m=2n-7=2(n-3)-1也为奇整数,与题设矛盾,所以m+7为奇整数
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答