神经网络算法原理

如题所述

一共有四种算法及原理,如下所示:

1、自适应谐振理论(ART)网络

自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。

2、学习矢量量化(LVQ)网络

学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。

3、Kohonen网络

Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。

4、Hopfield网络

Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。

扩展资料:

人工神经网络算法的历史背景:

该算法系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。

参考资料来源:百度百科——神经网络算法

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-01-13

神经网络算法和聚类算法的区别
1、神经网络算法的实现原理是每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化,应用在流程建模与控制中。2、聚类算法的实现原理是以空间中k个点为中心进行聚类,对最靠近的对...

神经网络NN算法(理论篇)
神经网络算法(Neural Network)是机器学习领域极其重要的算法,构成了深度学习的核心,理解其工作原理为后续学习打下了坚实基础。神经网络灵感来源于生物神经元的研究,自1904年生物学家揭示神经元结构以来,研究不断深入。神经网络主要由输入层、隐藏层和输出层三部分组成,各层单元通过权重传递信息。输入层接...

什么是神经网络算法
神经网络算法是指,根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:信息是通过神经元上的兴...

神经网络算法原理
总的来说,神经网络算法原理是通过模拟人脑神经元的工作方式,构建复杂的网络结构来处理数据。通过训练和学习,神经网络能够自动提取数据的特征并做出决策。这种强大的能力使得神经网络在许多领域都取得了突破性进展。

nnet是什么算法
NNET算法就是基于这种神经网络模型的一种具体实现。在NNET算法中,网络通过训练来学习和调整权重,以便能够准确地预测或分类输入数据。训练过程通常包括前向传播和反向传播两个步骤。在前向传播阶段,输入数据被传递给网络,经过各层的处理后得到输出。然后,在反向传播阶段,根据网络的输出和实际标签之间的...

rbf神经网络原理
5、rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。6、组合神经网络。取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较...

什么是神经网络算法?
一般来说,神经网络算法的第一步是学习。在这个过程中,神经网络需要不断调整突触的数值,以便改进运算表现,更好地完成分配给它的任务。不幸的是,算法用来识别神经网络中突触正确数值的技术来自于一套复杂的数学方法,被称为“反向传播”。这个过程需要执行一系列高精度运算,会消耗大量能量。神经网络算法...

神经网络算法原理
一共有四种算法及原理,如下所示:1、自适应谐振理论(ART)网络 自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。2、学习矢量量化(LVQ)网络 学习矢量量化(LVQ)网络,它由...

简单介绍神经网络算法
直接简单介绍神经网络算法 神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。神经元内输入 经历了3步数学运算,先将两个输入乘以 权重 :权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,...

神经网络算法
从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。 我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数: 这⾥ w 表⽰所有的...

相似回答