1+1:哥德巴赫猜想
哥德巴赫猜想有何现实意义??
很多高等数学的推论等着哥德巴赫猜想的得证才能成立啊.如果它是真的,那数学界将受益匪浅,就算是错的,研究过程的附带收获也高得吓人
哥德巴赫猜想是什么?有什么意义吗?
用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的...
数学家陈景润研究的“1+1”,究竟有什么实际意义?
证明哥德巴赫猜想的意义之一是:为将来科学技术打下基石,研究数学科学的本质是探索未知,而不是出现问题再开始探索,不解决未知问题,人类科技走不远。证明哥德巴赫猜想的意义之二是:在证明过程中,发现新的数学思路和建立新的数学工具,并对其它衍生定理做补充,这些副产品比问题本身更有价值。破解世界数...
哥德巴赫猜想有何意义
一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而哥德巴赫猜想对于小学生来说都能读懂。数学界普遍认为,这两个问题的难度不相上下。民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决哥德巴赫猜想。退一步讲,即使那天有一个...
哥德巴赫猜想有何实用价值?
哥德巴赫猜想属于数学科学的一个科学假说,是一种数论理论的探讨,因此它对于发展数学理论具有“实用”价值,但由于它不是应用科学,因此不具有生活意义的价值。不过,哥德巴赫猜想几百年来尚未得到解决,这说明人类的思维与解决问题的方法还有待于根本的提高。也就是说,即使哥德巴赫猜想本身没有什么实用价值...
哥德巴赫猜想被证明,实际用处是什么?
哥德巴赫猜想的表述极为简单:任何一个大于2的偶数都可以表示成两个素数之和,例如4=2+2,6=3+3,8=3+5。小学生都看得懂这道题目,让人误以为其证明也会像中小学数学题那么简单,这是为什么有那么多没有受过专业数学训练,甚至只有中小学文化程度的人都自以为比大数学家更有能耐,灵机一动...
哥德巴赫猜想有何意义
回答:“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》) 关于哥德巴赫猜想的难度我就不想再说什么了,我要...
哥德巴赫猜想等世界数学难题有何现实作用
有人说:“哥德巴赫猜想犹如一只会生金蛋的鸭子,可以孵化一种新的思想方法”,就是这个意思了!其他看起来没什么实际用途的世界难题,都用这方面的作用!关于圆周率pi,计算它也是有很重大的意义的!在计算机发明之前,计算圆周率是一项算法和智力的竞赛,数学家们在那个时期发明了很多计算圆周率的公式,...
如果哥德巴赫猜想被证明不成立,对数学和人类生活有何影响?
另一角度的意义 但是它的另一方面的意义在于促进数学的发展,间接促进人类进步。因为现有的数学工具不足以证明哥德巴赫猜想,所以如果哥猜获得证明,就说明有新的数学工具被发展了出来,嗯。。我们就可以用新工具去证明更新的定理了!。。除此之外,我们获得了对某一个世界的更好认识。
哥德巴赫猜想有何实用价值
没什么实用价值,但可以促使数学理论和数学思想的发展,从而带动整个数学学科的发展,数学的发展又会带动整个自然科学的发展。