连续是可积的什么条件?

如题所述

第1个回答  2022-11-14
问题一:函数连续是函数可积的什么条件 充分非必要条件
函数连续肯定是可积的,但包含有限个第一类间断点的函数也是可积的

问题二:函数什么时候可积,可积的条件是什么 充分条件
连续函数必可积
有有限个第一类间断点也可积
具体参考《高等数学》

问题三:高等数学,连续/可积/有界/三者的关系 首先一下几点都是对一元函数所说的,对多元函数不一定成立:
1,连续和可导有非常明确的关系,即可导一定连续,但连续不一定可导,例如y=|x|在x=0处连续,但该点处的左右导数不相等,故不可导.关于可导一定连续,严格证明教材上都有,这里只给一个形象的解释,函数f(x)在x0处的导数f‘(x0)定义为x趋于x0时lim[f(x)-f(x0)]/(x-x0),这个极限表达式中,分母已经是趋于0的了,如果极限值存在,分子也必须趋于0(否则极限为∞),从而形成极限的0/0型未定式,而这就保证了limf(x)=f(x0),也就是f(x)在x0处连续.另外以上两条的逆否命题是“不连续一定不可导”,“不可导不一定不连续”,也是很有用的.
2,关于有界和连续,对于一般的情况,有界不一定连续(例如狄利克雷函数D(x)),连续也不一定有界(例如y=x).有界和连续只在特殊的情况下有联系,例如对点而言,函数在某点连续则在该点的某个邻域内一定有界,这是由于在某点连续的函数在该点极限一定存在,而函数极限具有局部有界性,注意我们只能断言这样的邻域一定存在,但是邻域的范围一般是不能事先断言的.对于区间而言,在闭区间上连续的函数一定有界,而对于开区间或无穷区间,都不一定成立,例如f(x)=1/x在(0,1)上连续但无界.
3,有界和可导之间一般来说没有什么关系,有界不一定可导,可导也不一定有界.
4,注意着三个概念的定义方式,连续和可导都是“逐点”定义的,即先定义在某点处函数的连续与可导,再推广到区间,推广的方式是非常自然的,即如果在区间内每一点处函数都连续或可导,则说函数在这个区间上连续或可导.连续和可导本质上是“局部”性质的概念,而有界不同,它没有“点定义”,说函数在某点处有界是没有意义的,有界性是定义在区间上的,所以本质上是“整体”性质的概念.
5,从上面的讨论可以看出,对于闭区间来说,可导一定连续,连续一定有界,即这三个概念的强弱程度为:可导>连续>有界.

问题四:函数在区间上连续是函数在区间上可积的什么条件如题 充分非必要条件
函数连续肯定是可积的,但包含有限个第一类间断点的函数也是可积的

问题五:函数连续是函数可积的什么条件 充分非必要条件
函数连续肯定是可积的,但包含有限个第一类间断点的函数也是可积的

问题六:函数什么时候可积,可积的条件是什么 充分条件
连续函数必可积
有有限个第一类间断点也可积
具体参考《高等数学》

问题七:函数在区间上连续是函数在区间上可积的什么条件如题 充分非必要条件
函数连续肯定是可积的,但包含有限个第一类间断点的函数也是可积的

函数连续是函数可积的什么条件
既不是充分条件,也不是必要条件。对于一元函数有,可微<=>可导=>连续=>可积。对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。可导与连续的关系:可导必连续,连续不一...

连续是可积的什么条件?
1,连续和可导有非常明确的关系,即可导一定连续,但连续不一定可导,例如y=|x|在x=0处连续,但该点处的左右导数不相等,故不可导.关于可导一定连续,严格证明教材上都有,这里只给一个形象的解释,函数f(x)在x0处的导数f‘(x0)定义为x趋于x0时lim[f(x)-f(x0)]\/(x-x0),这个极限表达式中,分...

连续是可积的什么条件?
连续是可积的充分非必要条件。可积是可定积分是部分曲线下的阴影面积(一个数字)和有原函数是两个独立概念。连续的函数,有限震荡的函数,一定有原函数,其他没有,连续的函数可积,有有限个间断点的有界函数可积。连续的原函数,有限震荡的有原函数,第一类间断点(可去间断点,跳跃间断点)无穷间断...

函数f(x)在[a,b]上有界,是f(x)在[a,b]上可积的什么条件?
连续是可积的充分非必要条件。因为在区间上连续就一定有原函数,根据n-l公式得定积分存在。反之,函数可积不能推出连续,只要函数在[a,b]上单调,或在[a,b]上有界且间断点个数有限,就可以积分。f(x)在[a,b]上有界,是f(x)在[a,b]上可积的条件。例如这个函数 f(x)=1(x是有理数)...

连续函数一定可积吗?
其实,连续是可积的充分非必要条件,如果f(x)在(a,b)上不连续,而是分断连续的,即有有限个间断点,f(x)仍然可积。可积函数不一定连续,连续是比可积更苛刻的条件,要判断一个函数是否连续,还是要通过定义来判断,并非在可积的基础上单加什么条件就可以判断。连续的可积函数也就是连续函数;...

函数可积的充要条件
函数可积的充要条件如下:1、函数在区间上连续。如果函数在区间上连续,那么它在该区间上可积。函数在区间上有界。如果函数在区间上有界,那么它在该区间上可积。函数在区间上分段光滑。如果函数在区间上分段光滑,那么它在该区间上可积。2、函数在区间上无跳跃间断点。如果函数在区间上无跳跃间断点,...

函数在区间上连续是函数在区间上可积的什么条件如题
充分非必要条件 函数连续肯定是可积的,但包含有限个第一类间断点的函数也是可积的

可积但原函数不一定存在,原函数存在不一定可积,那可是否矛盾?
可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。原函数存在的充分条件:连续。另外函数含有第一类间断点,那么不存在原函数,含无穷型的间断点也不存在原函数。问题一:否,若f(x)存在原函数F(x),那么F'(x)=f(x),若f(x)在x=c是跳跃间断点,必然,f(c 0)...

可积函数的函数可积的充分条件
可积函数的函数可积的充分条件:1、函数有界;2、在该区间上连续;3、有有限个间断点。函数可以定义在点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。

什么是函数可积性?
因为积分的数学意思就是求面积,因为f(x)在区间(a,b)连续,故可以求面积,所以可积。其实,连续是可积的充分非必要条件,如果f(x)在(a,b)上不连续,而是分断连续的,即有有限个间断点,f(x)仍然可积。

相似回答
大家正在搜