函数连续是函数可积的什么条件
既不是充分条件,也不是必要条件。对于一元函数有,可微<=>可导=>连续=>可积。对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。可导与连续的关系:可导必连续,连续不一...
连续是可积的什么条件?
1,连续和可导有非常明确的关系,即可导一定连续,但连续不一定可导,例如y=|x|在x=0处连续,但该点处的左右导数不相等,故不可导.关于可导一定连续,严格证明教材上都有,这里只给一个形象的解释,函数f(x)在x0处的导数f‘(x0)定义为x趋于x0时lim[f(x)-f(x0)]\/(x-x0),这个极限表达式中,分...
连续是可积的什么条件?
连续是可积的充分非必要条件。可积是可定积分是部分曲线下的阴影面积(一个数字)和有原函数是两个独立概念。连续的函数,有限震荡的函数,一定有原函数,其他没有,连续的函数可积,有有限个间断点的有界函数可积。连续的原函数,有限震荡的有原函数,第一类间断点(可去间断点,跳跃间断点)无穷间断...
函数f(x)在[a,b]上有界,是f(x)在[a,b]上可积的什么条件?
连续是可积的充分非必要条件。因为在区间上连续就一定有原函数,根据n-l公式得定积分存在。反之,函数可积不能推出连续,只要函数在[a,b]上单调,或在[a,b]上有界且间断点个数有限,就可以积分。f(x)在[a,b]上有界,是f(x)在[a,b]上可积的条件。例如这个函数 f(x)=1(x是有理数)...
连续函数一定可积吗?
其实,连续是可积的充分非必要条件,如果f(x)在(a,b)上不连续,而是分断连续的,即有有限个间断点,f(x)仍然可积。可积函数不一定连续,连续是比可积更苛刻的条件,要判断一个函数是否连续,还是要通过定义来判断,并非在可积的基础上单加什么条件就可以判断。连续的可积函数也就是连续函数;...
函数可积的充要条件
函数可积的充要条件如下:1、函数在区间上连续。如果函数在区间上连续,那么它在该区间上可积。函数在区间上有界。如果函数在区间上有界,那么它在该区间上可积。函数在区间上分段光滑。如果函数在区间上分段光滑,那么它在该区间上可积。2、函数在区间上无跳跃间断点。如果函数在区间上无跳跃间断点,...
函数在区间上连续是函数在区间上可积的什么条件如题
充分非必要条件 函数连续肯定是可积的,但包含有限个第一类间断点的函数也是可积的
可积但原函数不一定存在,原函数存在不一定可积,那可是否矛盾?
可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。原函数存在的充分条件:连续。另外函数含有第一类间断点,那么不存在原函数,含无穷型的间断点也不存在原函数。问题一:否,若f(x)存在原函数F(x),那么F'(x)=f(x),若f(x)在x=c是跳跃间断点,必然,f(c 0)...
可积函数的函数可积的充分条件
可积函数的函数可积的充分条件:1、函数有界;2、在该区间上连续;3、有有限个间断点。函数可以定义在点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。
什么是函数可积性?
因为积分的数学意思就是求面积,因为f(x)在区间(a,b)连续,故可以求面积,所以可积。其实,连续是可积的充分非必要条件,如果f(x)在(a,b)上不连续,而是分断连续的,即有有限个间断点,f(x)仍然可积。