数学符号i是什么意思

如题所述

数学符号太多,不数学运算中经常使用符号,如+,-,×,÷,=,>,<,∽,(),√�等,能找得太全,也不是那么容易的,这里只找了一些常用的。加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。另一乘号“·”是数学家赫锐奥特首创的。除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比。也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。十七世纪微积分创始人莱布尼兹广泛使用了这个符号,从此人们普遍使用。在(小)于号“>”,“<”,1631年为英国数学家赫锐奥特创用。相似号“∽”和全等号“≌”是数学家莱布尼兹创用。括号“( )”,1591年法国数学家韦达开始使用括线,1629年格洛德开始使用括号。平方根号“√�”,1220年意大利数学家菲波那契使用R作为平方根号。十七世纪法国数学家笛卡尔在他的《几何学》一书中第一次用“√�”表示根号。“√�”是由拉丁文root(方根)的第一个字母“r”变来,上面的短线是括线,相当于括号。
数学符号一般有以下几种:

(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”

(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”

(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分

P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
回答者:tzzjh - 助理 二级 11-9 10:49

--------------------------------------------------------------------------------

(1)数量符号

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶)等。

(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”

(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”

(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分

P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分

P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数

参考资料:http://zhidao.baidu.com/question/8627869.html?md=3

温馨提示:内容为网友见解,仅供参考
第1个回答  2006-12-29
我晕!!!不就是一个数学符号吗?用得着从网页上剪贴长篇大论来忽悠小朋友吗?

第一种情况是在复数中表示虚数单位;
第二种情况是在向量分解中表示横向单位.
第2个回答  2006-12-29
虚数
相似回答