求函数定义域和值域有哪些方法?(详细说明)

如题所述

定义域是函数y=f(x)中的自变量x的范围。
求函数的定义域需要从这几个方面入手:
(1),分母不为零
(2)偶次根式的被开方数非负。
(3),对数中的真数部分大于0。
(4),指数、对数的底数大于0,且不等于1
(5)。y=tanx中x≠kπ+π/2,
y=cotx中x≠kπ等等。
值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-04-08
定义域:首先要明白每个基本函数的定义域。复合函数中,要考虑到是函数有意义(比如分母不为零,根号下为非负数等等)
值域:1.根据单调性
2.求反函数,看反函数的定义域
3.利用不等式(最常用的是均值,慎用,需考虑各项正负和取等条件)
4.复合函数中,利用已知函数值域求未知函数值域
5.换元法(通常是三角换元,换元时注意换与被换两者的范围一定要相同)
6.利用几何性质(比如斜率,两点间距离之类的)
能想到的就这么多,随便想的,没有顺序。
一个函数,求值域的方法会有很多,要灵活运用,寻求最优解法。
第2个回答  2019-10-18
先求定义域,再根据定义域求值域。

定义域要考虑到,X,Y等是否符合题意,(总之要慢一点做,认真审题),有时不仅是X,Y,还可能有其他约束条件。

想熟练地求定义域,必须熟练各种函数的特征,然后在许多函数组合时才不会蒙。

求函数定义域和值域有哪些方法?(详细说明)
常用的求值域的方法:(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

函数的定义域和值域怎么求
求函数的定义域和值域的方法如下:1、定义域:根据函数关系式的限制条件,如对数函数的定义域为实数范围,指数函数的定义域为正实数范围等。根据实际问题的要求,如求解实际问题中的函数定义域时,需要满足实际问题的限制条件。2、值域观察法:根据函数解析式直接观察,对于一些简单的函数,如一次函数、二次...

函数定义域和值域怎么求
在求解函数的定义域和值域时,可以采用多种方法。直接法是从自变量x的取值范围出发,进而确定函数值y=f(x)的取值范围。这种方法适用于一些简单的函数。对于“二次函数类”的函数,配方法是一种常用的基本方法。形如F(X)=af²(x)+bf(x)+c(a≠0)的函数,可通过配方法求得其值域。此外,...

函数定义域和值域的求法?
(1)直接法——从自变量x的范围出发,推出y=f(x)的取值范围.(2)配方法——配方法是求“二次函数类”值域的基本方法,形如F(X)=af²(x)+bf(x)+c的函数的值域问题,均可使用配方法.(3)反函数法——利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原...

求函数 的定义域和值域。
1、求函数定义域的常用方法有:(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;(2)根据实际问题的要求确定自变量的范围;(3)根据相关解析式的定义域来确定所求函数自变量的范围;(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g...

求函数的定义域和值域有哪些方法?怎样求(标准的格式)?
求定义域: 如果是整式则定义域为R,如果是2次根式,则根号里的式子大于等于0,如果是分式,则分母不等于0.求值域: 一元二次的可以配方来求,看图像来判断值域是哪一段。 有反解法,有常数分离法,有配方法,有图像法,还有判别式法 ...

函数的定义域和值域如何求解?
函数定义域的求法:1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示。2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题。3、对复合函数y=f 的定义域的求解,应先由y=f (u)求出u...

关于高中函数值域和定义域求解的具体方法
常用方法有:(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;(2)配方法:配方法是求“二次函数类”值域的基本方法,形如F(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法 (3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到...

高中数学 | 函数定义域值域求法汇总!考前必备!
对数函数:形式为y = log_a(x)。定义域为x > 0,因为对数函数的底数a必须大于0且不等于1。值域为全体实数,因为对数函数图像覆盖所有y轴值。以上为高中数学中常见函数的定义域与值域求解方法。理解这些概念与技巧,对于解题和掌握函数特性至关重要。希望以上分享能帮助同学们在高考中取得理想成绩!

求函数定义域和值域的方法
求定义域:在题目没有特殊要求时,函数的定义域就是使得函数表达式有意义的x的取值范围。为了保证表达式有意义,主要需注意以下几点:1、分母不为0;2、偶次方根被开方数大于等于0;3、对数式的真数大于0;4、零次方和负数次方的底数不为0;5、正切对应的角不等于丌\/2+2k丌.求值域常用方法:1、配...

相似回答