收敛数列一定有界?
收敛数列一定有界。本质就是收敛数列一定有界,(反证,假设无界,肯定不收敛)有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的。)数列收敛指的是数列有极限。我们把极限存在的数列称为收敛数列,把极限不存在的数列称为发散数列。数列极限定义 设{Xn}为一数列,如果存在一个实...
数列收敛是不是必然有界?
数列收敛则数列必然有界,但是反过来不一定成立!如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
数列收敛是数列有界的什么条件
数列收敛是数列有界的必要而不充分条件,没有界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛,有界数列是指任一项的绝对值都小于等于某一正数的数列。如果数列Xn收敛,每个收敛的数列只有一个极限。如果数列Xn收敛,那么该数列必定有界。数列有界是数列收敛的必要条件,但不是充分条件。若...
数列收敛,必然有界吗?
数列收敛则数列必然有界,但是反过来不一定成立!如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。例如数列{(-1)^n},显然...
数列收敛一定有界吗
数列收敛一定有界,(反证,假设无界,肯定不收敛);有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的。)收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a| 收敛数列与其子数列间的关系:子数列...
为什么说收敛数列一定有界?
原因很显然。数列不像函数,数列能取到的值是有限的。所以只要给出一个有限长的区间,我总能一个一个顺着找到最大值最小值。因而数列要出现无穷大的趋近,只能在无穷远出,因为此时这段区间上有无穷多个点,从而不能一个一个去找最值了。函数则不一样。所以收敛函数有界的说明中是说,如果函数在...
收敛一定有界吗,为什么?
收敛必然有界,反之不一定;连续是说函数在某范围是一条不间断的曲线。与收敛、有界,没有必然关系。比如,数列是典型的不连续函数,但是,可以收敛、有界;y=sinx是典型的有界、处处收敛、连续的函数。令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意...
高等数学:有界不一定收敛,收敛一定有界,为什么呢
收敛数列一定有界(反证,假设无界,肯定不收敛)有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是一个确定的数,显然有界,当n趋于无穷时数列收敛,,说明后面的任意项都是一个有限的数。而函数收不...
收敛一定有界吗?
(1) 收敛一定有界,因为收敛会逐渐逼近一个确定值,因此在收敛方向上一定有界;如 f(x) = e^(-x) *sinx 当x趋近正无穷时;(2) 有界不一定收敛,可以在边界内跳跃或震荡;例如 f(x)=sinx 有界,|f(x)|<=1,但是当x趋近正无穷时,却不收敛。(3) 指数函数 f(x) = 2^x,当x趋近正...
数列的有界性是数列收敛的什么条件?证明
数列有界是数列收敛的必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛,有界数列是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。如果数列有极限,则数列是有界的,数列有界...