lim(x→负∞)根号下(x^2+3x+1)减 根号下(x^2-x+1)=

如题所述

第1个回答  2020-05-14
设极限式为A,1/x = -y,则y-inf,y->0A = [(x^2+3x+1) - (x^2-x+1) ]/ [ sqrt(x^2+3x+1) + sqrt(x^2-x+1)]分子分母同除以x,则A = (4 + y)/-[sqrt(1 - 3y + y^2) + sqrt(1 +y +y^2)]limA = -2

lim(x→负∞)根号下(x^2+3x+1)减 根号下(x^2-x+1)=
设极限式为A,1\/x = -y,则y-inf,y->0A = [(x^2+3x+1) - (x^2-x+1) ]\/ [ sqrt(x^2+3x+1) + sqrt(x^2-x+1)]分子分母同除以x,则A = (4 + y)\/-[sqrt(1 - 3y + y^2) + sqrt(1 +y +y^2)]limA = -2 ...

lim(x->-∞)√(x^2+3x+1)+x=?怎么求?急
lim(x->-∞)√(x^2+3x+1)+x =lim(x->-∞)[√(x^2+3x+1)+x][√(x^2+3x+1)-x]\/[√(x^2+3x+1)-x]=lim(x->-∞)(3x+1)\/[√(x^2+3x+1)-x]=lim(x->-∞)(3+1\/x)\/[√(x^2+3x+1)\/x-1]=lim(x->-∞)(3+1\/x)\/[-√(1+3\/x+1\/x²)-1]=...

limx趋近于无穷大√(x2+3x+1)-√(x2-2x-1)
=lim((x2+3x+1)-(x2-2x-1))\/(√(x2+3x+1)+√(x2-2x-1))=lim(x+2)\/((√(x2+3x+1)+√(x2-2x-1))=lim(1+2\/x)\/((√(1+3\/x+1\/x2)+√(1-2\/x-1\/x2))=1\/2 (x→∞)

lim(x->-∞)√(x^2-x+1)\/(3x+1)怎么做啊
=lim[x→-∞] √[(x²-x+1)\/x²]\/(3+1\/x)=lim[x→-∞] √(1-1\/x+1\/x²)\/(3+1\/x)=-√(1)\/(3+0),根号具正负性质,由于x趋向负无穷,所以根号取负号 =-1\/3

Lim(x→无穷大)√(x^2+3x)-x
lim(x→inf.)[√(x^2+3x) - x]= lim(x→inf.)3x\/[√(x^2+3x) + x]= lim(x→inf.)3\/[√(1+3\/x) + 1]= 3\/2

Lim(x→无穷大)√(x^2+3x)-x
lim(x→inf.)[√(x^2+3x) - x]= lim(x→inf.)3x\/[√(x^2+3x) + x]= lim(x→inf.)3\/[√(1+3\/x) + 1]= 3\/2

limx→∞(3x-√(ax^2-x+1)存在,求a
楼上的回答是正确的,楼主的疑问俺给说下,当x→∝时,分母的极限和x的极限是同级别的无穷大,它们极限是可以求出比例的,这个比例[1\/(3+√a)]就是整个式子的极限。而x^2是更高级的无穷大,它和分母的极限比例[x\/(3+√a)]还是无穷大,则式子的极限不存在(∝)。所以x^2的系数必须是0,...

x趋向于+∞ 时 根号下(x^2+3x+2)-x 值
这种问题适合采用分子有理化,过程如下:(x^2+3x+2)^(1\/2)-x = [(x^2+3x+2)^(1\/2)-x][(x^2+3x+2)^(1\/2)+x]\/[(x^2+3x+2)^(1\/2)+x]=(3x+2)\/[(x^2+3x+2)^(1\/2)+x]=1\/[【(x^2+3x+2)\/(3x+2)^2】^(1\/2)+x\/(3x+2)]=1\/{【[1\/(3+2\/x)]^2...

解方程:根号下(x^2-1) 根号下(x^2+4x+ 3)=根号下(3x^2+ 4x+ 1)
X+3)]=√[(3X+1)(X+1)]∴√(X+1)*[√(X-1)+√(X+3)-√(3X+1)]=0 √(X+1)=0或√(X-1)+√(X+3)=√(3X+1)X=-1或2X+2+2√[(X-1)(X+3)]=3X+1 4(X-1)(X+3)=(X-1)^2 (X-1)[4X+12-X+1]=0 X=1或X=-13\/3,经检验都是原方程的解。

lim(x→∞)[(X^2+2x+5)\/(3x^2-x+1) =
无穷大时只考虑高阶的系数就可以了,本题是x²的系数

相似回答
大家正在搜