请帮忙查询一下论文是否被SCI检索

论文是:Urban Arterial Travel Time Prediction with State-Space Neural Networks and Kalman Filters
作者信息:Liu, H., Lint, van, J.W.C., Zuylen, van, H.J., Salomons, M.,
如果查到的话请贴出检索信息,谢谢!

文件名应该是Predicting urban arterial travel time with state-space neural networks and Kalman filters吧,已经可以检索到了,检索信息如下(BibTex的bib文件内容):

@inproceedings{ ISI:000245460800012,

Author = {Liu, Hao and van Zuylen, Henk and van Lint, Hans and Salomons, Maria},

Book-Group-Author = {{Natl Acad, TRB}},

Title = {{Predicting urban arterial travel time with state-space neural networks

   and Kalman filters}},

Booktitle = {{ARTIFICIAL INTELLIGENCE AND ADVANCED COMPUTING APPLICATIONS}},

Series = {{TRANSPORTATION RESEARCH RECORD}},

Year = {{2006}},

Number = {{1968}},

Pages = {{99-108}},

Note = {{85th Annual Meeting of the Transportation-Research-Board, Washington,

   DC, JAN 22-26, 2006}},

Organization = {{Transportat Res Board}},

Abstract = {{A hybrid model for predicting urban arterial travel time on the basis

   of so-called state-space neural networks (SSNNs) and the extended

   Kalman filter (EKF) is presented. Previous research demonstrated that

   SSNNs can address complex nonlinear spatiotemporal problems. However,

   SSNN models require off-line training with large sets of input-output

   data, presenting three main drawbacks: (a) great amounts of time and

   effort are involved in collecting, preparing, and executing these

   training sessions; (b) as the input-output mapping changes over time,

   the model requires complete retraining; and (c) if a different input

   set becomes available (e.g., from inductive loops) and the input-output

   mapping has to be changed, then retraining the model is impossible

   until enough time has passed to compose a representative training data

   set. To improve SSNN effectiveness, the EKF is proposed to train the

   SSNN instead of conventional approaches. Moreover, this network

   topology is derived from the urban travel time prediction problem.

   Instead of treating the neural network as a ``black-box{''} model, the

   design explicitly reflects the relationships that exist in physical

   traffic systems. It allows the interpretation of neuron weights and

   structure in terms of the inherent mechanism of the network process

   with clear physical meaning. Model performance was tested on a densely

   used urban arterial in the Netherlands. Performance of this proposed

   model is compared with that of two existing models. Results of the

   comparisons indicate that the proposed model predicts complex nonlinear

   urban arterial travel times with satisfying effectiveness, robustness,

   and reliability.}},

Publisher = {{NATL ACAD SCI}},

Address = {{2101 CONSTITUTION AVE, WASHINGTON, DC 20418 USA}},

Type = {{Proceedings Paper}},

Language = {{English}},

Affiliation = {{Liu, H (Reprint Author), Delft Univ Technol, Fac Civil Engn \& Geosci, POB 5048, NL-2600 GA Delft, Netherlands.

   Delft Univ Technol, Fac Civil Engn \& Geosci, NL-2600 GA Delft, Netherlands.

   Natl ITS Ctr Engn \& Technol, Beijing 100088, Peoples R China.}},

ISSN = {{0361-1981}},

ISBN = {{978-0-309-09977-6}},

Keywords-Plus = {{REAL-TIME; PERFORMANCE}},

Subject-Category = {{Engineering, Civil; Transportation; Transportation Science \& Technology}},

Number-of-Cited-References = {{22}},

Times-Cited = {{1}},

Doc-Delivery-Number = {{BFY64}},

Unique-ID = {{ISI:000245460800012}},

}

温馨提示:内容为网友见解,仅供参考
第1个回答  2010-04-30
收录了!
Predicting urban arterial travel time with state-space neural networks and Kalman filters
作者: Liu H (Liu, Hao), van Zuylen H (van Zuylen, Henk), van Lint H (van Lint, Hans), Salomons M (Salomons, Maria)
书籍团体作者: Natl Acad, TRB
来源出版物: ARTIFICIAL INTELLIGENCE AND ADVANCED COMPUTING APPLICATIONS 丛书: TRANSPORTATION RESEARCH RECORD 期: 1968 页: 99-108 出版年: 2006
被引频次: 1 参考文献: 22 引证关系图
会议信息: 85th Annual Meeting of the Transportation-Research-Board
Washington, DC, JAN 22-26, 2006
Transportat Res Board
摘要: A hybrid model for predicting urban arterial travel time on the basis of so-called state-space neural networks (SSNNs) and the extended Kalman filter (EKF) is presented. Previous research demonstrated that SSNNs can address complex nonlinear spatiotemporal problems. However, SSNN models require off-line training with large sets of input-output data, presenting three main drawbacks: (a) great amounts of time and effort are involved in collecting, preparing, and executing these training sessions; (b) as the input-output mapping changes over time, the model requires complete retraining; and (c) if a different input set becomes available (e.g., from inductive loops) and the input-output mapping has to be changed, then retraining the model is impossible until enough time has passed to compose a representative training data set. To improve SSNN effectiveness, the EKF is proposed to train the SSNN instead of conventional approaches. Moreover, this network topology is derived from the urban travel time prediction problem. Instead of treating the neural network as a "black-box" model, the design explicitly reflects the relationships that exist in physical traffic systems. It allows the interpretation of neuron weights and structure in terms of the inherent mechanism of the network process with clear physical meaning. Model performance was tested on a densely used urban arterial in the Netherlands. Performance of this proposed model is compared with that of two existing models. Results of the comparisons indicate that the proposed model predicts complex nonlinear urban arterial travel times with satisfying effectiveness, robustness, and reliability.
文献类型: Proceedings Paper
语言: English
KeyWords Plus: REAL-TIME; PERFORMANCE
通讯作者地址: Liu, H (通讯作者), Delft Univ Technol, Fac Civil Engn & Geosci, POB 5048, NL-2600 GA Delft, Netherlands
地址:
1. Delft Univ Technol, Fac Civil Engn & Geosci, NL-2600 GA Delft, Netherlands
2. Natl ITS Ctr Engn & Technol, Beijing 100088, Peoples R China
出版商: NATL ACAD SCI, 2101 CONSTITUTION AVE, WASHINGTON, DC 20418 USA
IDS 号: BFY64
ISSN: 0361-1981
ISBN: 978-0-309-09977-6本回答被提问者采纳

如何判断自己的英文论文是否被sci收录?
在搜索框中输入论文标题、作者姓名或关键词等信息进行检索。检索结果页面会显示论文的基本信息,包括是否被SCI收录。若被收录,页面侧会有“Times Cited”(被引次数)等信息。EI(Engineering Index):访问EI数据库(https:\/\/www.engineeringvillage.com\/)官方网站,注册或登录账号。在搜索框中输入论文标...

从哪里查论文是否被SCI收录
那么,如何查证论文是否被SCI收录?开具论文检索报告是直接证明的手段。使用掌桥科研平台,可以开具包括论文被SSCI数据库收录情况在内的报告。报告不仅证明论文是否被SCI收录,还包含论文引用情况和期刊指标,应用范围广泛,如职称评审、学位申请、科研项目申请、学术交流、合作等。开具论文检索报告步骤如下:1....

如何查看论文是否被sci检索
(1)查找SCI检索通常通过ISI Web of Knowledge来进行查询,直接在百度中输入ISI Web of Knowledge即可,这时会输出查询到的网页,第一个标注的就是ISI Web of Knowledge的官网。(2)打开官网链接,我们在下图标注1的地方输入我们要查询的论文,并在标注2部分可以选择检索信息的主题,最后点击标注3进行检...

怎样查询论文是否是sci和ei?
1、EI检索的查询通常通过Engineering Village 进行查询。在360浏览器中输入Engineering Village关键词即可。2、在打开链接的标注处输入要查询的论文的标题,输入完按Enter键或点击research按钮。3、观察检索的结果,看论文是否被检索到。方法二:1、查找SCI检索通常通过ISI Web of Knowledge来进行查询,直接在3...

怎么看论文有没有被sci收录?
1、登录Web of science查询检索证明 作者发表论文能否证明被sci收录,首先要建立在sci论文成功检索的基础上,一般sci论文见刊1-3个月左右,作者可登录Web of science查询,能查询到,就可检索,证明论文被sci收录。2、打印论文首页证明 作者登录Web of science查询到属于本人的论文页面,打印出来,提供...

怎么查一篇收录论文是否是sci?
查询论文是否被SCI检索的步骤如下:1)首先,我们通过百度搜索找到web of science网站;2)打开web of science网站后,我们可以通过论文题目搜索到该论文。点击该论文的信息我们可以看到论文的详细信息,如:名称,卷Volume,期Issue,页Pages Special Issue: SI,表示特刊 DOI号: 数字对象标识符 (Digital ...

如何查询论文被SCI收录情况
二、如何查询一篇论文是否被SCI收录 1. 在图书馆主页—资源中心中找到“SCI(ISI)”,点击进入Web of Science平台主页。需要注意的是,这里链接名称虽然是“SCI”,但是点击链接后进入的是包含SCIE数据库的Web of Science平台。2. Web of Science平台—“选择数据库”的下拉菜单中,选择“Web of Science...

如何能知道论文被sci发表?
论文被sci收录,一般在1-3个月左右就能在网上查询,此时,您会看到论文被sci收录信息。1、登录Web of science查询检索证明 作者发表论文能否证明被sci收录,首先要建立在sci论文成功检索的基础上,一般sci论文见刊1-3个月左右,作者可登录Web of science查询,能查询到,就可检索,证明论文被sci收录。2...

如何查询sci检索号
在论文详细页面中,SCI检索号通常会在论文的元数据部分或者参考文献部分。你可以仔细查看这些信息,找到SCI检索号。这个检索号是非常重要的,它可以帮助你确认这篇论文是否被SCI收录,以及被收录的具体情况。请注意,查询SCI检索号需要一定的时间,因为可能需要浏览和查看多篇相关的论文。同时,确保你的网络...

如何查询自己的医学论文是否被国外杂志收录
要查询论文收录情况,最直接的方法是访问这些数据库。一般情况下,学校图书馆会订阅这些数据库,为师生提供方便的检索途径。学校图书馆通常会提供数据库的访问账号与密码,学生只需登录数据库,输入论文相关信息,便能查询到论文是否被收录于这些系统。具体操作时,可以按如下步骤进行:1. 登录学校图书馆提供...

相似回答