等差数列公式为:Sn=a1*n+[n*(n-1)*d]/2。
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9…2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。
相关信息:
①数列必须满足有序性。比如说集合{1,2,3,4},它表示n=1时,an=1;n=2时,an=2,以此类推。所以它与{1,3,2,4}是两个不同的集合,二者虽然定义域值域都相同,但是对应关系不同。而{1,2,3,4}与{1,3,2,4}是同一个集合。
②数列不必满足互异性。我们知道集合的元素必须满足互异性,即任意两个元素不能够重复,而数列中的项与项之间可以相等。所以在数列中,摇摆数列,周期数列,常数列都是被允许的。如数列an=sin(nπ/2)就是一个典型的周期数列。因为数列本质上是函数,函数的因变量取值可以相等,所以数列的不同项也可以相等。
等差数列6个公式
1、一般项公式:an=a1+(n-1)d。2、和公式:Sn=n(a1+an)\/2。3、等比数列的一般项公式:an=a1*q^(n-1)。4、等比数列的和公式:Sn=a1*(1-q^n)\/(1-q)。5、等比级数的和公式:S=a1\/(1-q)。6、三项和公式:Sn=a1+an+an-1。二、等差数列的有关概念 1、定义:如果一个数列从第...
等差数列有什么性质和公式吗?
9、等差数列的公差公式:d=(an- a1)\/(n-1),其中an是第n项,a1是第一项,d是公差。10、等差数列的通项与首项和公差的关系:an= a1+(n-1)*d,其中an是第n项,a1是第一项,d是公差。等差数列的用途:1、计算数学期望:在概率论和统计学中,等差数列可以用来计算数学期望。例如,在...
等差数列的计算公式是
Sn=(a1+an)*n\/2 或 Sn=na1+n(n-1)\/2 d
等差数列等比数列公式
等差数列公式:等差数列通项公式:an=a1+(n-1)d,等差数列求和公式:Sn=n(a1+an)\/2。等比数列公式:等比数列通项公式:an=a1*q^(n-1),等比数列求和公式:Sn=a1*(1-q^n)\/(1-q)。其相关内容如下:1、等差数列和等比数列的形式:等差数列和等比数列是数学中的两种重要概念,它们分...
等差数列的公式是什么?
等差数列三个基本公式:等差数列的通项公式为:a(n)=a(1)+(n-1)*d。前n项和公式为:S(n)=n*a(1)+n*(n-1)*d\/2。前n项和公式为:S(n)=n*(a(1)+a(n))\/2。等差数列基本公式:末项=首项+(项数-1)×公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)×公差...
等差数列的公式是什么?
等差数列的通项公式为:an=a1+(n-1)d 或an=am+(n-m)d 前n项和公式为:Sn=na1+n(n-1)d\/2或Sn=(a1+an)n\/2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n均为正整数 文字翻译 第n项的值=首项+(项数-1)*公差 前n项的和=(首项+末项)*项数\/2 ...
等差数列的基本公式是什么?
等差数列基本的5个公式有:1、an=a1+(n-1)*d。2、an=a1+(n-1)*d。3、Sn=a1*n+【n*(n-1)*d】\/2。4、Sn=【n*(a1+an)】\/2。5、Sn=d\/2*n+(a1-d\/2)*n。等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做...
等差数列的通项公式是什么?等比数列呢?
等差数列的通项公式为:an=a1+(n-1)d 前n项和公式为:Sn=na1+n(n-1)d\/2或Sn=n(a1+an)\/2 (n属于自然数)。a1为首项,an为末项,n为项数,d为等差数列的公差。等比数列 an=a1×q^(n-1);求和:Sn=a1(1-q^n)\/(1-q) =(a1-an×q)\/(1-q) (q≠1)推导等差数列的前n项和...
差等差数列的公式
等差数列的通项公式为:“an=a1+(n-1)*d”(n:表示项数,d:表示公差,a1:表示首项),等差数列的前n项和公式为:“Sn=a1*n+[n*(n-1)*d]\/2或者Sn=[n*(a1+an)]\/2”。注意其中的n都为整数。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等差数列的公式是什么?
公式为Sn=n(a1+an)\/2,推导:Sn=a1+a2+……+a(n-1)+an。则由加法交换律 Sn=an+a(n-1)+……+a2+a1。两式相加:2Sn=(a1+an)+[a2+a(n-1)]+……+[a(n-1)+a2]+(an+a1)。因为等差数列中a1+an=a2+a(n-1)=……所以2Sn=n(a1+an)。所以Sn=(a1+an)*n\/2。