1/(x^2-1)不定积分

1/(x^2-1)不定积分可以帮我解答一下吗,要详细过程

1/2ln[(1+x)/(1-x)]+C

解题:

=1/2∫[1/(1-x)+1/(1+x)]dx

=1/2[-ln(1-x)+ln(1+x)]+C

=1/2ln[(1+x)/(1-x)]+C

由定义可知:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-05-16

1/2ln[(1+x)/(1-x)]+C

解题过程如下:

=1/2∫[1/(1-x)+1/(1+x)]dx

=1/2[-ln(1-x)+ln(1+x)]+C

=1/2ln[(1+x)/(1-x)]+C

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

本回答被网友采纳
第2个回答  2021-05-24

1/2ln[(1+x)/(1-x)]+C

解题过程如下:

=1/2∫[1/(1-x)+1/(1+x)]dx

=1/2[-ln(1-x)+ln(1+x)]+C

=1/2ln[(1+x)/(1-x)]+C

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

本回答被网友采纳
第3个回答  2021-05-24

具体回答如下:

1/(x^2-1)不定积分

=1/2∫[1/(1-x)+1/(1+x)]dx

=1/2[-ln(1-x)+ln(1+x)]+C

=1/2ln[(1+x)/(1-x)]+C

不定积分性质:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

本回答被网友采纳
第4个回答  2018-01-08

如上,请采纳。

本回答被网友采纳
相似回答