logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。
logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。
Logistic回归模型的适用条件
1 因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。
2 残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。
3 自变量和Logistic概率是线性关系
4 各观测对象间相互独立。
原理:如果直接将线性回归的模型扣到Logistic回归中,会造成方程二边取值区间不同和普遍的非直线关系。因为Logistic中因变量为二分类变量,某个概率作为方程的因变量估计值取值范围为0-1,但是,方程右边取值范围是无穷大或者无穷小。所以,才引入Logistic回归。
Logistic回归实质:发生概率除以没有发生概率再取对数。就是这个不太繁琐的变换改变了取值区间的矛盾和因变量自变量间的曲线关系。究其原因,是发生和未发生的概率成为了比值 ,这个比值就是一个缓冲,将取值范围扩大,再进行对数变换,整个因变量改变。不仅如此,这种变换往往使得因变量和自变量之间呈线性关系,这是根据大量实践而总结。所以,Logistic回归从根本上解决因变量要不是连续变量怎么办的问题。还有,Logistic应用广泛的原因是许多现实问题跟它的模型吻合。例如一件事情是否发生跟其他数值型自变量的关系。
注意:如果自变量为字符型,就需要进行重新编码。一般如果自变量有三个水平就非常难对付,所以,如果自变量有更多水平就太复杂。这里只讨论自变量只有三个水平。非常麻烦,需要再设二个新变量。共有三个变量,第一个变量编码1为高水平,其他水平为0。第二个变量编码1为中间水平,0为其他水平。第三个变量,所有水平都为0。实在是麻烦,而且不容易理解。最好不要这样做,也就是,最好自变量都为连续变量。
spss操作:进入Logistic回归主对话框,通用操作不赘述。
发现没有自变量这个说法,只有协变量,其实协变量就是自变量。旁边的块就是可以设置很多模型。
“方法”栏:这个根据词语理解不容易明白,需要说明。
共有7种方法。但是都是有规律可寻的。
“向前”和“向后”:向前是事先用一步一步的方法筛选自变量,也就是先设立门槛。称作“前”。而向后,是先把所有的自变量都进来,然后再筛选自变量。也就是先不设置门槛,等进来了再一个一个淘汰。
“LR”和“Wald”,LR指的是极大偏似然估计的似然比统计量概率值,有一点长。但是其中重要的词语就是似然。
Wald指Wald统计量概率值。
“条件”指条件参数似然比统计量概率值。
“进入”就是所有自变量都进来,不进行任何筛选
将所有的关键词组合在一起就是7种方法,分别是“进入”“向前LR”“向前Wald”"向后LR"“向后Wald”“向后条件”“向前条件”
下一步:一旦选定协变量,也就是自变量,“分类”按钮就会被激活。其中,当选择完分类协变量以后,“更改对比”选项组就会被激活。一共有7种更改对比的方法。
“指示符”和“偏差”,都是选择最后一个和第一个个案作为对比标准,也就是这二种方法能够激活“参考类别”栏。“指示符”是默认选项。“偏差”表示分类变量每个水平和总平均值进行对比,总平均值的上下界就是"最后一个"和"第一个"在“参考类别”的设置。
“简单”也能激活“参考类别”设置。表示对分类变量各个水平和第一个水平或者最后一个水平的均值进行比较。
“差值”对分类变量各个水平都和前面的水平进行作差比较。第一个水平除外,因为不能作差。
“Helmert”跟“差值”正好相反。是每一个水平和后面水平进行作差比较。最后一个水平除外。仍然是因为不能做差。
“重复”表示对分类变量各个水平进行重复对比。
“多项式”对每一个水平按分类变量顺序进行趋势分析,常用的趋势分析方法有线性,二次式。
学习Logistic回归,必须掌握的知识点!
1. Logistic回归概述Logistic回归是一种广泛应用于社会学、生物统计学等领域的离散选择模型,尤其在二分类问题中表现出色,尽管其名称看似回归,实则更常用于区分两个类别。2. Logistic回归公式与决策过程Logistic回归公式表达为:Y = 1 \/ (1 + e^(-w*x)),其中Y是决策值,x是特征值。通过观察其S...
logistic回归分析是什么意思?
(1)二元logit回归分析,因变量为二分类变量。(2)多分类logit回归。因变量为分类数据多组且无序。(3)有序logit回归,因变量为分类数据多组且有序。二元Logit回归分析用于研究X对于Y的影响关系,其中X为定量数据或者定类数据,Y为二分类定类数据,(Y的数字一定只能为0和1)例如愿意和不愿意、是...
logistic回归的概述
如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。Logistic回归模型的适用条件1 因变量为二分类的分类变...
logistic回归概述
在流行病学领域,logistic回归是一种广泛应用的分析工具,主要目的在于探索疾病发生的危险因素,并据此预测患病概率。例如,研究胃癌发生的风险因素,可以通过将人群分为胃癌组和非胃癌组,对比两组个体在体征、生活习惯等方面是否存在显著差异。在该分析中,胃癌状态(是或否)作为二分类因变量,而年龄、性别...
logistic回归是怎么回事?
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic...
logistic 回归是个什么东西?
Logistic回归是用于解决二分类问题的机器学习方法,它通过估计事物的可能性来预测结果,而非简单的回归预测。其本质是假设数据服从特定分布,并使用极大似然估计进行参数估计。Logistic分布是一种连续概率分布,其分布函数和密度函数定义了概率密度随值变化的规律,为解决二分类问题提供了理论基础。在逻辑回归中...
一文详解统计学基础之logistic回归模型公式
Logistic模型,又称为Logistic回归模型,是一种广义线性模型(GLM),主要用于处理二分类问题。它通过使用Logistic函数(或称为Sigmoid函数)来估计概率,从而预测一个事件的发生与否。Logistic函数(Sigmoid函数)的核心是其数学表达式,函数输出值介于0和1之间,非常适合用来表示某个事件发生的概率。其中,e是...
logistic回归模型有几种?
1、二项logistic回归:因变量为两种结局的二分类变量,如中奖=1、未中奖=0;自变量可以为分类变量,也可以为连续变量;阳性样本量n要求是自变量个数至少10倍。2、无序多分类logistic回归:因变量为无序的多分类变量,如获取健康知识途径(传统大众媒介=1,网络=2,社区宣传=3);自变量可以为分类变量,...
logistic回归的介绍
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因...
逻辑斯蒂回归(logistic regression)
逻辑斯蒂回归:连接线性与非线性的神奇桥梁 想象一下,线性回归的简洁与Sigmoid激活函数的魔力相遇,这就是逻辑斯蒂回归,一个将数据巧妙映射到概率世界的关键工具。让我们一起探索它的奥秘吧。一、逻辑斯蒂分布的韵律逻辑斯蒂分布,以μ为位置中心,γ为动态调整的形状,它的密度函数犹如一条优雅的S形曲线...