无穷小等价替换的公式是什么

如题所述

等价无穷小替换公式如下 :

以上各式可通过泰勒展开式推导出来。 

等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 

极限:

历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限。

其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。

温馨提示:内容为网友见解,仅供参考
无其他回答

无穷小的等价代换公式
若两个无穷小之比的极限为1,则等价无穷小代换常用公式:arcsinx ~ x;tanx ~ x;e^x-1 ~ x;ln(x+1) ~ x;arctanx ~ x;1-cosx ~ (x^2)\/2;tanx-sinx ~ (x^3)\/2;(1+bx)^a-1 ~ abx;希望能帮助你还请及时采纳谢谢 ...

无穷小的等价代换是什么?
无穷小的等价公式是=1-cosx。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。当x趋向于0时...

无穷小等价代换公式?
等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来,等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被...

无穷小等价替换的公式是什么
等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来。等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。极限:历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一...

等价无穷小替换公式是什么?
等价无穷小替换公式是:当x趋近于某一值时,函数f与另一个函数g无穷小量相等时,即f=g。此时可以在相关计算中进行等价替换。等价无穷小替换公式是微积分中的一个重要概念。在微积分中,我们常常会遇到某些复杂的函数在特定的点上趋近于零的情况,这种函数称为无穷小量。而等价无穷小替换公式的核心思想...

无穷小量等价代换的公式是什么?
等价无穷小量指的是在两个无穷小量在极限运算过程中等价代换。它对于极限的求解起到简便运算作用。当x趋向于0时,有以下重要等价无穷小:1.sinX~X。2.tanX~X。3.arcsinX~X。4.ln(1+X)~X。5.e^x-1~X。6.a^x-1~Xlna (a>0,a≠1)。7.1-cosX~1\/2X^2。8.(1+βx)^α...

什么是等价无穷小替换公式?
通常情况下,等价无穷小替换公式可表示为:lim f(x) = lim g(x)其中,f(x) 和 g(x) 是两个函数,它们在特定点 a 处具有相同的极限。等价无穷小替换公式的应用需要考虑到以下几点:1. 在给定点 a 处,两个函数 f(x) 和 g(x) 的极限必须相等。也就是说,lim f(x) = L 和 lim g...

等价无穷小的公式是什么?
高等数学等价替换公式是如下:当x→0,且x≠0,则x~sinx~tanx~arcsinx~arctanx。x~ln(1+x)~(e^x-1)。(1-cosx)~x*x\/2。[(1+x)^n-1]~nx。loga(1+x)~x\/lna。a的x次方~xlna。(1+x)的1\/n次方~1\/nx(n为正整数)。相关介绍 等价无穷小是无穷小之间的一种关系,指的是:在...

常用等价无穷小替换公式是什么?
常用等价无穷小替换公式表及证明 一、常用等价无穷小替换公式表及证明 当x趋近于0时:e^x-1~x、ln(x+1)~x、sinx~x、arcsinx~x、tanx~x、arctanx~x、1-cosx~ (x^2)\/2、tanx-sinx~(x^3)\/2、(1+bx)^a-1~abx。二、扩展知识 1、无穷小 无穷小量是数学分析中的一个概念,在经典的...

极限求无穷小的等价代换的常用公式
1 常用的求无穷小等价代换公式包括:泰勒展开,极限法,洛必达法则等。2 泰勒展开法是利用函数在某一点附近的泰勒公式来求得函数的极限值,将其与无穷小形式进行比较,得到等价代换。3 洛必达法则适用于求极限值中出现的不定式,将其进行变形,然后对分子分母分别求导,再次比较原式和极限值的无穷小形式...

相似回答
大家正在搜