第3个回答 2018-12-12
解:原式=1/2∫arcsinxdx^2
=1/2(x^2arcsinx-∫x^2darcsinx)
=1/2(x^2arcsinx-∫(x^2/√1-x^2)dx)
设x=cost(0<t<π)
则∫(x^2/√ 1-x^2)dx
=∫[cos^2(t)/sint]dcost
=-∫cos^2(t)dt
=-1/2∫(1+cos2t)dt
=-1/2(∫dt+1/2∫cos2td2t)
=-1/2(t+1/2sin2t)+C
所以原式=1/2(x^2arcsinx)+1/4arccosx+
+1/4(x√1-x^2)+C