已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.(1)求数列{an}、{bn}的通项公式;(2)设cn=an?sin2nπ2-bn?cos2nπ2(n∈N*),求数列{cn}的前2n项和T2n.
...1(n∈N*),数列{bn}满足b1=1,nbn+1=(n+1)bn,(n∈N*)(
(1)令n=1,得a1=S1=2a1-1,解得a1=1,当n≥2时,an=Sn-Sn-1=2(an-an-1),整理,得an=2an-1,∴an=2n?1.∵数列{bn}满足b1=1,nbn+1=(n+1)bn,∴bn+1n+1=bnn,∴{bnn}是首项为1的常数列,∴bnn=1,∴bn=n.(2)∵数列{bn}的前n项和为Qn,∴Qn=1+2+3...
已知数列{an}前n项和为sn,且sn=2an-1,数列{bn}满足b1=2,bn+1=an+bn...
同样,sn=2an-1,sn-1=2a(n-1)-1 两式做差 所以an=2an-1 an=2^(n-1)所以b(n+1)=bn+2^(n-1)b(n+1)-bn=2^(n)-1 用累加法 bn+1=2^(n)-1+b1 所以bn=2^(n)+1
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N+ ).(1)求数列{an}的...
(1)由已知Sn=2an-1当n=1时,a1=S1=2a1-1,得a1=1;当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1),所以an=2an-1,所以数列{an}是首项为1,公比为2的等比数列,所以an=2n-1(n∈N+ ).(2)bn=an+1(an+1)(an+1+1)=2(12n+1+1?12n+1),∴Tn=2[(12?13)...
已知数列{an}的前n项和为Sn,且满足Sn=2an-2n(n∈N*)?(I)设bn=an+2...
1=an+2an?1+2=2an?1+4an?1+2=2(常数),∴{bn}是以b1=a1+2=4为首项,2为公比的等比数列,∴数列{bn}的通项公式bn=2n+1.…(6分)(Ⅱ)∵cn=log2bn=log22n+1=n+1,∴cnbn=n+12n+1,…(8分)则Tn=222+323+…+n2n+n+12n+1,…①12Tn=223+324+…+n2n+1+...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*)(1)求数列{an}的通...
(1)∵Sn=2an-n,∴a1=1,∵Sn=2an-n,Sn-1=2an-1-(n-1),n≥2,n∈N+,两式相减,得an=2an-1+1,∴an+1=2(an-1+1),n≥2,n∈N+,∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,∴an+1=2n,∴an=2n-1.(2)∵bn=(2n+1)an+2n+1,∴bn=(2n...
设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn...
解答:解:(1)当n=1时,a1=s1=21-1=1;当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1,a1=1适合通项公式an=2n-1,∴an=2n-1(n∈N*);(2)∵bn+1-2bn=8an,∴bn+1-2bn=2n+2,∴ bn+1 2n+1 - bn 2n =2,又 b1 21 =1,∴{ bn 2n }是首项为1,公差为2的...
已知数列{an}的前n项和为Sn,满足Sn=2an-2(Ⅰ)求数列{an}的通项公式...
(Ⅰ)当n=1时,S1=2a1-2=a1,∴a1=2;当n>1时,an=Sn-Sn-1=2an-2an-1,∴an=2an-1,∴anan?1=2;∴数列{an}是首项为2,公比为2的等比数列,∴an=2n.(Ⅱ)bn=1(n+1)log22n=1n?(n+1)=1n?1n+1;∴Tn=(1?12)+(12?13)+…+(1n?1n+1)=1?1n+1.
设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N+,数列{bn}满足b1=1,且b...
即an=a(n-1)-an 即an=(1\/2)a(n-1)由sn=2-an及s1=a1得a1=2-a1 所以a1=1 所以数列{an}是以1\/2为公比,1为首项的等比数列 所以an=(1\/2)^(n-1)当n=1时适合an=(1\/2)^(n-1)所以数列{an}的通项是an=(1\/2)^(n-1)由b(n+1)=bn+an得 b(n+1)-bn=(1\/2)^(n-1...
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn。求数列bn...
根据Sn=2an-1与s(n-1)=2a(m-1)-1 两式相减,得an\/a(n-1)=2,即an是2为公比的等比数列。a1=2a1-1,得a1=1 所以an的通项公式为an=2^(n-1)所以bn+1=2^(n-1)+bn 用累加法,b(n+1)=2^(n-1)^(n-1)+2^(n-2)+。。。+2^0+b1 解得bn=2^(n-1)+1...
已知数列{an}的前n项和为Sn=2(an)-2,数列{bn}满足b1=1,切b(n+1)=...
An=Sn-Sn-1=2An-2-2A[n-1]+2=2An-2A[n-1] -An=-2A[n-1] An\/A[n-1]=2 所以是等差数列q=2 a1=s1=2a1-2 -a1=-2 a1=2 ∴An=2的n次方。。【这个真不知道打】b1=1 b[n+1]-bn=2 ∴bn是等差数列 ∴bn=2n-1 第二问我先看看,记得选我为答...