已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N+ ).(1)求数列{an}的通项公式an;(2)设bn=an+1(an+1)(an+1+1)(n∈N+),求数列{bn}的前n项和Tn.
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N+ ).(1)求数列{an}的...
(1)由已知Sn=2an-1当n=1时,a1=S1=2a1-1,得a1=1;当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1),所以an=2an-1,所以数列{an}是首项为1,公比为2的等比数列,所以an=2n-1(n∈N+ ).(2)bn=an+1(an+1)(an+1+1)=2(12n+1+1?12n+1),∴Tn=2[(12?13...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*)(1)求数列{an}的通...
n≥2,n∈N+,两式相减,得an=2an-1+1,∴an+1=2(an-1+1),n≥2,n∈N+,∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,∴an+1=2n,∴an=2n-1.(2)∵bn=(2n+1)an+2n+1,∴bn=(2n+1)?
...2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足b
(1)当n∈N+时,Sn=2an-2n,则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1) ①-②,an=2an-2an-1-2,an=2an-1+2∴an+2=2(an-1+2),∴an+2an-1+2=2,n=1时 S1=2a1-2,∴a1=2∴{an+2}是a1+2=4为首项2为公比的等比数列,∴an+2=4?2n-1=2n+1,∴an...
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).(Ⅰ)求数列{an}的...
(3分)两式相减得an=2an-1,…(5分)∴{an}是首项为1,公比为2的等比数列,…(6分)∴an=2n?1.…(7分)(Ⅱ)解:∵bn=an-n,an=2n?1,bn=2n?1?n…(8分)Tn=b1+b2+…+bn =(20?1)+(21?2)+…+(2n?1?n)=(20+21+…+2n-1)-(1+2+…+n)…(...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*),求数列{an}的通项...
解: 把a1 = s1,代入已知Sn=2an-n a1 = 2a1 - 1 ,得a1 = 1 当n>1时 an = Sn-S(n-1)= 2an-n -[2a(n-1)-(n-1)]= 2an - 2a(n-1)-1 an = 2a(n-1)+1,两边都加1 (an)+1 = 2[a(n-1)+1],数列{an+1}是首项为2(因为是a1+1),公比为2的等比数列 a...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*),求数列{an}的通项...
由Sn=2an-n知当n=1时a1=2a1-1,a1=1当n>=2则an=Sn-S(n-1)=(2an-n)-2an(n-1)+(n-1)整理得an+1=2[a(n-1)+1]即数列{an+1}是首项为a1+1=2,公比为2得等比数列,所以an+1=2的n次方,an=2的n次方-1当n=1时a1=2-1=1也成立,即...多谢采纳...!
已知数列{an}的前n项和为Sn,且满足Sn=2-an(n∈N+)(Ⅰ)求an的通项公式...
(Ⅰ)因为Sn=2-an(n∈N+),所以a1=1,当n≥2时,Sn-1=2-an-1,所以an=-an+an-1,即an=12an?1.所以an=(12)n?1(4分)(Ⅱ)由题设得,f(k)=a1a1+k-1+a2a2+k-1+…+a21-ka20+a22-ka1+…+a20ak-1(6分)=12k?1+12k+1+…+1239?k+1221?k+…+12k+17=4(220...
已知数列{an}得前n项和为,且满足Sn=2an-n(n∈N*),求数列{an}得通项公...
Sn=2An-n① S(n-1)=2A(n-1)-(n-1)② 相减得:An=2A(n-1)+1 ∴An+1=2(A(n-1)+1)∴{An+1}是等比数列,公比为2,首项可以求得为2 ∴An+1=2^n ∴An=2^n-1
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).(1)求数列{an}的通项公...
(1)当n=1时,a1=2a1-2,解得a1=2;当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,∴an=2an-1,故数列{an}是以a1=2为首项,2为公比的等比数列,故an=2?2n?1=2n.(2)由(1)得,bn=n?2n+log122n=n?2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+...
已知数列{an}的前n项和为Sn,且满足Sn=2n?1(n∈N*).(1)求数列{an}的通...
Sn?1=(9n?1)?(9n?1?1)=9n?9n?1=9n?1,∵a1=1适合上式,∴{an}的通项公式是an=9n?1.…(6分)(9)bn=(9n?1)9n?1=99n?1?9n?1,…(地分)∴Tn=(91+9个+95+…+99n?1)?(90+91+99+…+9n?1)=9(1?4n)1?4?1?9n1?9=9?4n?9个?9n+1=9个?4n?9n+...